Trắc nghiệm Tính chất ba đường trung tuyến trong tam giác có đáp án - Toán lớp 7
Bộ 20 bài tập trắc nghiệm Toán lớp 7 Bài 4: Tính chất ba đường trung tuyến trong tam giác có đáp án đầy đủ các mức độ giúp các em ôn trắc nghiệm Toán 7 Bài 4.
Trắc nghiệm Toán 7 Bài 4: Tính chất ba đường trung tuyến trong tam giác
Bài giảng Trắc nghiệm Toán 7 Bài 4: Tính chất ba đường trung tuyến trong tam giác
Câu 1: Cho tam giác ABC có G là trọng tâm tam giác, N là trung điểm AC. Khi đo BG = ... BN. Số thích hợp điền vào chỗ trống là:
A.
B.
C. 3
D. 2
Đáp án: A
Giải thích:
Vì G là trọng tâm của nên
Số thích hợp điền vào chỗ trống là
Câu 2: Tam giác ABC có trung tuyến và G là trọng tâm. Độ dài đoạn AG là
A. 7,5 cm
B. 5 cm
C. 10 cm
D. 22,5 cm
Đáp án: C
Giải thích:
Vì G là trọng tâm tam giác ABC và AM là đường trung tuyến nên
(tính chất ba đường trung tuyến của tam giác)
Do đó
Câu 3: Điền số thích hợp vào chỗ chấm: "Trọng tâm của một tam giác cách mỗi đỉnh một khoảng bằng ... độ dài đường trung tuyến đi qua đỉnh ấy"
A.
B.
C. 3
D. 2
Đáp án: A
Giải thích:
Định lý: Vị trí trọng tâm: Trọng tâm của một tam giác cách mỗi đỉnh một khoảng bằng độ dài đường trung tuyến đi qua đỉnh ấy.
Số cần điền là
Câu 4: Chọn câu sai
A. Trong một tam giác có ba đường trung tuyến
B. Các đường trung tuyến của tam giác cắt nhau tại một điểm.
C. Giao của ba đường trung tuyến của một tam giác gọi là trọng tâm của tam giác đó.
D. Một tam giác có hai trọng tâm
Đáp án: D
Giải thích:
+ Một tam giác chỉ có một trọng tâm nên đáp án D sai.
Câu 5: Cho hình vẽ sau
5.1: Biết MG = 3cm. Tính MR
A. 1cm
B. 2cm
C. 3cm
D. 4,5 cm
Đáp án: D
Giải thích:
Ta có: MR, NS là hai đường trung tuyến của tam giác MNP và chúng cắt nhau tại G nên G là trọng tâm tam giác MNP
Theo tính chất ba đường trung tuyến của tam giác ta có:
Vậy MR = 4,5cm
5.2: Biết GS = 1,5cm. Tính NG
A. 1,5cm
B. 3cm
C. 2,25cm
D. 1cm
Đáp án: B
Giải thích:
Theo câu trước ta có G là trọng tâm của tam giác MNP.
Theo tính chất ba đường trung tuyến của tam giác ta có:
Vậy NG = 3cm
Câu 6: Chọn câu đúng
A. Trong một tam giác, đoạn thẳng nối từ đỉnh đến trung điểm cạnh đối diện là đường trung tuyến của tam giác.
B. Các đường trung tuyến của tam giác cắt nhau tại một điểm.
C. Trọng tâm của tam giác đó là giao của ba đường trung tuyến.
D. Cả A, B, C đều đúng.
Đáp án: D
Giải thích:
- Đường trung tuyến của tam giác là đoạn thẳng nối đỉnh của tam giác với trung điểm của cạnh đối diện nên A đúng.
- Ba đường trung tuyến của một tam giác cùng đi qua một điểm. Điểm gặp nhau của ba đường trung tuyến gọi là trọng tâm của tam giác đó nên B, C đúng.
Câu 7: Cho tam giác MNP, hai đường trung tuyến ME, NF cắt nhau tại O. Tính diện tích tam giác MNP, biết diện tích tam giác MNO là
A.
B.
C.
D.
Đáp án: D
Giải thích:
Gọi MH là đường cao kẻ từ M xuống cạnh BC, NK là đường cao kẻ từ N xuống cạnh ME.
Hai đường trung tuyến ME và NF cắt nhau tại O nên O là trọng tâm tam giác MNP, do đó
Có ME là trung tuyến ứng với cạnh NP nên E là trung điểm của NP, suy ra
Ta có:
Từ đó suy ra:
Câu 8: Cho tam giác ABC có hai đường trung tuyến BD; CE sao cho . Khi đó tam giác ABC
A. Cân tại B
B. Cân tại C
C. Vuông tại A
D. Cân tại A
Đáp án: D
Giải thích:
Hai đường trung tuyến BD và CE cắt nhau tại G suy ra G là trọng tâm tam giác ABC
Suy ra ; mà .
Từ đó:
Xét tam giác BGE và tam giác CGD có:
BG = CG
GD = GE
(đối đỉnh)
Do đó hay tam giác ABC cân tại A
Câu 9: Tam giác ABC có trung tuyến và G là trọng tâm. Độ dài đoạn AG là
A. 4,5 cm
B. 3 cm
C. 6 cm
D. 4 cm
Đáp án: C
Giải thích:
Vì G là trọng tâm tam giác ABC và AM là đường trung tuyến nên
(tính chất ba đường trung tuyến của tam giác)
Do đó
Câu 10: Cho tam giác ABC, có G là trọng tâm và các đường trung tuyến AM, BN, CP. Trên tia AG kéo dài lấy điểm D sao cho G là trung điểm của AD. So sánh các cạnh của tam giác BGD với các đường trung tuyến của tam giác ABC
A.
B.
C.
D.
Đáp án: B
Giải thích:
có G là trọng tâm và các đường trung tuyến AM, BN, CP nên theo tính chất ba đường trung tuyến của tam giác ta có:
Vì G là trung điểm của AD nên mà (cmt), do đó
Ta có: (tính chất ba đường trung tuyến của tam giác)
Mà
Xét và có:
GM = MD
(hai góc đối đỉnh)
BM = MC (vì AM là đường trung tuyến của )
(hai cạnh tương ứng) mà (cmt) nên (cmt)
Vậy
Câu 11: Cho tam giác ABC vuông tại A có ; . Ba đường trung tuyến AM, BN, CE cắt nhau tại O. Độ dài trung tuyến CE là
A. 10cm
B.
C. 12 cm
D.
Đáp án: B
Giải thích:
vuông tại A nên theo định lí Pytago ta có:
Ta có AM, BN, CE là các đường trung tuyến ứng với các cạnh BC, AC, AB của tam giác vuông ABC
Suy ra M, N, E lần lượt là trung điểm của các cạnh BC, AC, AB
Áp dụng định lí Pytago vào tam giác ACE vuông tại A ta có:
Câu 12: Cho tam giác ABC có hai đường trung tuyến BD và CE vuông góc với nhau. Tính độ dài cạnh BC biết ;
A. BC = 12cm
B. BC = 6cm
C. BC = 8cm
D. BC = 10cm
Đáp án: D
Giải thích:
Gọi giao điểm của hai đường trung tuyến BD và CE là G thì G là trọng tâm tam giác ABC
Theo tính chất đường trung tuyến của tam giác ta có:
Mà ;
;
Xét tam goác BGC vuông tại G, theo định lí Pytago ta có:
Hay BC = 10cm
Vậy BC = 10cm
Câu 13: Cho tam giác ABC, đường trung tuyến BD. Trên tia đối của tia DB lấy điểm E sao cho . Gọi M, N theo thứ tự là trung điểm của BC; CE. Gọi I; K theo thứ tự là giao điểm của AM, AN và BE. Chọn câu đúng
A. BI = IK > KE
B. BI > IK > KE
C. BI = IK = KE
D. BI < IK < KE
Đáp án: C
Giải thích:
Vì AM, DB là hai đường trung tuyến của tam giác ABC và chúng cắt nhau tại I nên I là trọng tâm tam giác ABC
Khi đó: (1)
Vì AN, ED là hai đường trung tuyến của tam giác ACE và chúng cắt nhau tại K nên K là trọng tâm tam giác ACE nên
(2)
Từ (1) và (2) suy ra từ đó
Câu 14: Cho tam giác ABC vuông tại A có: ; . Ba đường trung tuyến AM, BN, CE cắt nhau tại O
Độ dài trung tuyến BN là:
A. 6cm
B.
C. 12cm
D.
Đáp án: B
Giải thích:
vuông tại A nên theo định lí Pytago ta có:
Ta có AM, BN, CE là các đường trung tuyến ứng với các cạnh BC, AC, AB của tam giác vuông ABC
Suy ra M, N, E lần lượt là trung điểm của các cạnh BC, AC, AB
Áp dụng định lí Pytago vào tam giác ABN vuông tại A ta có:
Câu 15: Cho tam giác ABC có hai đường trung tuyến BD và CE vuông góc với nhau. Tính độ dài cạnh BC biết ;
A. BC = 6cm
B. BC = 4,5cm
C. BC = 5cm
D. BC = 10cm
Đáp án: C
Giải thích:
Gọi giao điểm của hai đường trung tuyến BD và CE là G thì G là trọng tâm tam giác ABC
Theo tính chất đường trung tuyến của tam giác ta có:
Mà ;
;
Xét tam goác BGC vuông tại G, theo định lí Pytago ta có:
Hay BC = 5cm
Vậy BC = 5cm
Câu 16: Cho G là trọng tâm của tam giác đều. Chọn câu đúng
A. GA = GB = GC
B. GA = GB > GC
C. GA < GB < GC
D. GA > GB > GC
Đáp án: A
Giải thích:
Các tia AG, BG và CG cắt BC, AC, AB lần lượt tại D, E, F thì D, E, F theo thứ tự lần lượt là trung điểm của BC, AC, AB
Mà (do tam giác ABC là tam giác đều), do đó
Xét và ta có:
AB = AC
chung
AE = AF
(1)
Chứng minh tương tự ta có:
(2)
Từ (1) và (2) ta có: (3)
Theo đề bài G là trọng tâm của tam giác ABC nên ta có:
; ;
Vì thế từ (3) ta suy ra
Câu 17: Cho tam giác ABC, đường trung tuyến BD. Trên tia đối của tia DB lấy điểm E sao cho . Gọi M, N theo thứ tự là trung điểm của BC; CE. Gọi I; K theo thứ tự là giao điểm của AM, AN và BE. Tính BE biết
A. 6cm
B. 9cm
C. 12cm
D. 15cm
Đáp án: B
Giải thích:
Ta có: mà
Vì AM, DB là hai đường trung tuyến của tam giác ABC và chúng cắt nhau tại I nên I là trọng tâm tam giác ABC
Khi đó: (1)
Vì AN, ED là hai đường trung tuyến của tam giác ACE và chúng cắt nhau tại K nên K là trọng tâm tam giác ACE nên
(2)
Mặt khác kết hợp với (1);(2) suy ra
Do đó:
Câu 18: Tam giác ABC, các đường trung tuyến BD và CE. Chọn câu đúng
A.
B.
C.
D.
Đáp án: B
Giải thích:
Gọi G là giao điểm của BD và CE. Trong ta có
Ta lại có: ; (tính chất các đường trung tuyến của tam giác ABC)
Từ đó:
Câu 19: Cho G là trọng tâm của tam giác đều. D, E, F lần lượt là trung điểm của BC, AC, AB.Chọn câu đúng
A. GD > GE > GF
B. GD < GE < GF
C. GD > GE = GF
D. GD = GE = GF
Đáp án: D
Giải thích:
Vì D, E, F lần lượt là trung điểm của BC, AC, AB nên
Mặt khác (do tam giác ABC là tam giác đều), do đó
Xét và ta có:
AB = AC
chung
AE = AF
(1)
Chứng minh tương tự ta có
(2)
Từ (1) và (2) ta có: (3)
Theo đề bài G là trọng tâm của tam giác ABC nên ta có:
Kết hợp với (3) ta được:
Các câu hỏi trắc nghiệm Toán lớp 7 có đáp án, chọn lọc khác:
Trắc nghiệm Tính chất tia phân giác của một góc có đáp án
Trắc nghiệm Tính chất ba đường phân giác của tam giác có đáp án
Trắc nghiệm Tính chất đường trung trực của một đoạn thẳng có đáp án
Trắc nghiệm Tính chất ba đường trung trực của tam giác có đáp án
Xem thêm các chương trình khác:
- Trắc nghiệm Sinh học 8 có đáp án
- Trắc nghiệm Toán lớp 8 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Ngữ văn 8 có đáp án
- Trắc nghiệm Hóa học lớp 8 có đáp án
- Trắc nghiệm Địa Lí lớp 8 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Tiếng Anh lớp 8 có đáp án
- Trắc nghiệm GDCD lớp 8 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Lịch sử lớp 8 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Vật Lí lớp 8 có đáp án
- Trắc nghiệm Công nghệ lớp 8 có đáp án
- Trắc nghiệm Tin học lớp 8 có đáp án
- Trắc nghiệm Sinh học lớp 9 có đáp án
- Trắc nghiệm Toán lớp 9 có đáp án
- Trắc nghiệm Ngữ văn 9 có đáp án
- Trắc nghiệm Hóa học lớp 9 có đáp án
- Trắc nghiệm Địa lí lớp 9 có đáp án
- Trắc nghiệm Tiếng Anh lớp 9 có đáp án
- Trắc nghiệm GDCD lớp 9 có đáp án
- Trắc nghiệm Lịch sử lớp 9 có đáp án
- Trắc nghiệm Vật lí lớp 9 có đáp án
- Trắc nghiệm Công nghệ lớp 9 có đáp án
- Trắc nghiệm Sinh học lớp 10 có đáp án
- Trắc nghiệm Toán lớp 10 có đáp án
- Trắc nghiệm Hóa học lớp 10 có đáp án
- Trắc nghiệm Ngữ văn lớp 10 có đáp án
- Trắc nghiệm Vật Lí lớp 10 có đáp án
- Trắc nghiệm Tiếng Anh lớp 10 có đáp án
- Trắc nghiệm Sinh học lớp 11 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Toán lớp 11 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Hóa học lớp 11 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Ngữ văn lớp 11 có đáp án
- Trắc nghiệm Tiếng Anh lớp 11 có đáp án
- Trắc nghiệm Vật Lí lớp 11 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Địa lí lớp 11 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm GDCD lớp 11 có đáp án
- Trắc nghiệm Lịch sử lớp 11 có đáp án (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Trắc nghiệm Công nghệ lớp 11 có đáp án
- Trắc nghiệm Giáo dục quốc phòng - an ninh lớp 11 có đáp án
- Trắc nghiệm Tin học lớp 11 có đáp án
- Trắc nghiệm Toán lớp 12 có đáp án
- Trắc nghiệm Sinh học lớp 12 có đáp án
- Trắc nghiệm Hóa học lớp 12 có đáp án
- Trắc nghiệm Ngữ văn lớp 12 có đáp án
- Trắc nghiệm Tiếng Anh lớp 12 có đáp án
- Trắc nghiệm Địa lí lớp 12 có đáp án
- Trắc nghiệm Vật Lí lớp 12 có đáp án
- Trắc nghiệm Công nghệ lớp 12 có đáp án
- Trắc nghiệm Giáo dục công dân lớp 12 có đáp án
- Trắc nghiệm Lịch sử lớp 12 có đáp án
- Trắc nghiệm Giáo dục quốc phòng - an ninh lớp 12 có đáp án