Trắc nghiệm Một số bài toán về đại lượng tỉ lệ nghịch có đáp án - Toán lớp 7

Bộ 17 bài tập trắc nghiệm Toán lớp 7 Bài 4: Một số bài toán về đại lượng tỉ lệ nghịch có đáp án đầy đủ các mức độ giúp các em ôn trắc nghiệm Toán 7 Bài 4.

1 1,303 02/04/2022
Tải về


Trắc nghiệm Toán 7 Bài 4: Một số bài toán về đại lượng tỉ lệ nghịch

Bài giảng Trắc nghiệm Toán 7 Bài 4: Một số bài toán về đại lượng tỉ lệ nghịch

Câu 1: Trước khi xuất khẩu cà phê, người ta chia cà phê thành 4 loại: loại 1, loại 2, loại 3, loại 4 tỉ lệ với 4; 3; 2; 1. Tính khối lượng cà phê loại 4 biết tổng số cà phê bốn loại là 300kg

A. 30 kg

B. 36 kg

C. 48 kg

D. 144 kg

Đáp án: D

Giải thích:

Gọi x; y; z; t là khối lượng của bốn loại cà phê

(kg, 0 < x; y; z; t < 300)

Tổng số cà phê bốn loại là 300 kg

nên x + y + z + t = 300

Vì khối lượng cà phê loại 1, loại 2, loại 3, loại 4 tỉ lệ nghịch với 4;3;2;1 nên ta có:

4x=3y=2z=t x14=y13=z12=t1

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

x14=y13=z12=t1=x+y+z+t14+13+12+1=3002512=144

Vậy:

x=14.144=36y=13.144=48z=12.144=72t=1.144=144

Khối lượng cà phê loại 4 là 144 kg

Câu 2: Một ô tô đi quãng đường 135 km với vận tốc v(km/h) và thời gian t(h). Chọn câu đúng về mối quan hệ của v và t

A. v và t là hai đại lượng tỉ lệ nghịch với hệ số tỉ lệ 1135

B. v và t là hai đại lượng tỉ lệ nghịch với hệ số tỉ lệ 135

C. v và t là hai đại lượng tỉ lệ thuận với hệ số tỉ lệ 135

D. v và t là hai đại lượng tỉ lệ thuận với hệ số tỉ lệ 1135

Đáp án: B

Giải thích:

Từ bài ra ta có: v.t=135v=135t;t=135v

Nên v và t là hai đại lượng tỉ lệ nghịch với hệ số tỉ lệ 135

Câu 3: Một ô tô đi quãng đường 100km với vận tốc v(km/h) và thời gian t (h). Chọn câu đúng về mối quan hệ của v và t

A. v và t là hai đại lượng tỉ lệ nghịch với hệ số tỉ lệ 1100

B. v và t là hai đại lượng tỉ lệ nghịch với hệ số tỉ lệ 100

C. v và t là hai đại lượng tỉ lệ thuận với hệ số tỉ lệ 100

D. v và t là hai đại lượng tỉ lệ thuận với hệ số tỉ lệ 1100

Đáp án: B

Giải thích:

Từ bài ra ta có: v.t=100v=100t; t=100v

Nên v và t là hai đại lượng tỉ lệ nghịch với hệ số tỉ lệ 100

Câu 4: Hai xe ô tô cùng từ A đến B. Biết vận tốc của ô tô thứ nhất bằng 60% vận tốc của ô tô thứ hai và thời gian xe thứ nhất đi từ A đến B nhiều hơn thời gian ô tô thứ hai từ A đến B là 4 giờ. Tính thời gian xe thứ hai từ A đến B

A. 3

B. 6

C. 9

D. 4

Đáp án: B

Giải thích:

Gọi v1; v2 lần lượt là vận tốc của xe thứ nhất và xe thứ hai (km/h) (v1; v2> 0)

Gọi t1; t2 lần lượt là thời gian của xe thứ nhấy và xe thứ hai (h) (t1; t2> 0)

Từ đề bài ta có: 

v1=60100v2v1=35v2t1=t2+4

Vì vận tốc và thời gian là hai đại lượng tỉ lệ nghịch nên ta có:

v1.t1=v2.t235v2t2+4=v2.t235v2.t2+125v2.t2=v2.t212v2=2v2.t2

Mà v2>0 nên t2=12v22v2=6

Vậy thời gian người thứ hai đi từ A đến B là 6h

Câu 5: Hai xe máy cùng từ A đến B. Biết vận tốc của ô tô thứ nhất bằng 120% vận tốc của ô tô thứ hai và thời gian xe thứ nhất đi từ A đến B ít hơn thời gian ô tô thứ hai từ A đến B là 2 giờ. Tính thời gian xe thứ hai từ A đến B

A. 10

B. 12

C. 6

D. 4

Đáp án: B

Giải thích:

Gọi v1; v2 lần lượt là vận tốc của xe thứ nhất và xe thứ hai (km/h) (v1; v2> 0)

Gọi t1; t2 lần lượt là thời gian của xe thứ nhấy và xe thứ hai (h) (t1; t2> 0)

Từ đề bài ta có: 

v1=120100v2v1=65v2t2=t1+2

Vì vận tốc và thời gian là hai đại lượng tỉ lệ nghịch nên ta có:

v1.t1=v2.t265v2.t1=v2.t1+265v2.t1=v2.t1+2v265v2.t1-v2.t1=2v215v2.t1=2v2

Mà v2>0 nên t1=2v215v2=10

Vậy thời gian người thứ hai đi từ A đến B là

t2=10+2=12h

Câu 6: Để làm một công việc trong 8 giờ cần 30 công nhân. Nếu có 40 công nhân thì công việc đó được hoàn thành trong mấy giờ ?

A. 5 giờ

B. 8 giờ

C. 6 giờ

D. 7 giờ

Đáp án: C

Giải thích:

Gọi thời gian 40 công nhân làm một công việc đó là x (x > 0) (giờ)

Vì số công nhân và thời gian làm của công nhân là hai đại lượng tỉ lệ nghịch, nên theo bài ra ta có:

8.30=40x40x=240x=6 giờ

Vậy 40 công nhân thì công việc đó được hoàn thành trong 6 giờ.

Câu 7: Một số tự nhiên A được chia ra thành 3 phần tỉ lệ nghịch với các số 52; 43; 6. Biết tổng các bình phương của ba phần này là 24309. Tìm số tự nhiên A ban đầu

A. 327

B. 135

C. 273

D. 237

Đáp án: D

Giải thích:

Gọi ba phần được chia ra từ số A lần lượt là:

x, y, z (x, y, z > 0)

Theo đề bài, ba phần tỉ lệ nghịch với các số 52; 43; 6 nên ta có:

x.52=y.43=z.6x25=y34=z16

x2252=y2342=z2162x2425=y2916=z2136

Tổng bình phương của ba phần là 24309 nên

x2+y2+z2=24309

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x2425=y2916=z2136=x2+y2+z2425+916+136=2430927013600=32400

 x2425=32400x2=5184x=5184=72y2916=32400y2=18225y=18225=135z2136=32400z2=900z=900=30

A=x+y+z+tA=72+135+30=237

Vậy số tự nhiên A là 237

Câu 8: Một ô tô chạy từ A đến B với vận tốc 50 km/m thì hết 2 giờ 15 phút. Hỏi ô tô chạy từ A đến B với vận tốc 45 km/h thì hết bao nhiêu thời gian ?

A. 3,25 giờ

B. 3,5 giờ

C. 3 giờ

D. 2,5 giờ

Đáp án: D

Giải thích:

Đổi 2 giờ 15 phút = 2,25 giờ

Gọi thời gian ô tô chạy A đến B với vận tốc

45 km/h là x (x>0) (giờ)

Vì quãng đường đi không đổi nên vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.

Theo bài ra ta có:

50.2,25=45x45x=112,5x-2,5 giờ

Vậy thời gian cần tìm là 2,5 giờ.

Câu 9: Để làm một công việc trong 7 giờ cần 12 công nhân. Nếu có 21 công nhân thì công việc đó được hoàn thành trong mấy giờ ?

A. 5 giờ

B. 8 giờ

C. 4 giờ

D. 6 giờ

Đáp án: C

Giải thích:

Gọi thời gian 21 công nhân làm một công việc đó là x (x >0) (giờ)

Vì cùng một công việc thì số công nhân và thời gian làm của công nhân là hai đại lượng tỉ lệ nghịch, nên theo bài ra ta có:

7.12=x.2121x=84x=4 giờ

Vậy 21 công nhân thì công việc đó được hoàn thành trong 4 giờ.

Câu 10: Bạn Mai đi bộ đến trường hết 24 phút, nếu Mai đi xe đạp thì chỉ hết 10 phút. Tính vận tốc khi đi bộ, biết vận tốc đi xe đạp của Mai là 12 km/h

A. 5 km/h

B. 4 km/h

C. 6 km/h

D. 4,5 km/h

Đáp án: A

Giải thích:

Đổi 24 phút = 25h, 10 phút = 16h

Gọi vận tôc khi đi bộ của Mai là x (x >0) (km/h)

Vì quãng đường đi không đổi nên vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.

Theo bài ra ta có:

25x=16.1225x=2x=5(km/h)

Vậy vận tốc khi đi bộ của Mai là 5 km/h

Câu 11: Ba đội máy cày, cày trên ba cánh đồng có diện tích như nhau. Đội thứ nhất hoàn thành công việc trong4 ngày, đội thứ hai trong 3 ngày và đội thứ 3 trong 4 ngày. Hỏi đội thứ hai có bao nhiêu máy cày, biết rằng đội thứ hai có ít hơn đội thứ ba là 3 máy và công suất của các máy như nhau?

A. 10 máy

B. 20 máy

C. 12 máy

D. 15 máy

Đáp án: C

Giải thích:

Gọi số máy cày của ba đội lần lượt là

x; y; z (x; y; z > 0)

Vì diện tích ba cánh đồng là như nhau nên thời gian và số máy cày là hai đại lượng tỉ lệ nghịch

Theo bài ra ta có:

x.3 = y.5 = z.4 và z - y = 3

Suy ra: y4=z5.

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

y4=z5=z-y5-4=31=3

Do đó y = 12 ; z = 15

Vậy đội thứ hai có 12 máy

Câu 12: Trong một cơ sở sản xuất, do cải thiện kĩ thuật nên năng suất công nhân tăng 25% so với ban đầu. Hỏi nếu số công nhân không thay đổi thì thời gian làm việc giảm bao nhiêu phần trăm ?

A. 80%

B. 20%

C. 25%

D. 75%

Đáp án: B

Giải thích:

Gọi thời gian hoàn thành công việc của cơ sở sản xuất ban đầu và sau khi cải tiến kĩ thuật lần lượt là t1, t2 (t1, t2>0) (giờ), năng suất lao động của công nhân là x1, x2x1, x2>0(sản phẩm/ giờ).

Năng suất lao động của công nhân sau khi cải tiến kĩ thuật là

x2=x1+25100x1=5x14 (sản phẩm/ giờ).

Vì năng suất công nhân và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch nên ta có:

x1.t1=x2.t2x1.t1=5x14t2t2=x1.t15x14=45t1t2=80100t1=80%t1

Do đó thời gian hoàn thành công việc sau khi cải tiến kĩ thuật bằng 80% thời gian lúc đầu.

Vậy thời gian làm việc sau khi cải tiến kĩ thuật giảm:

100%−80%=20%

Câu 13: Để làm một công việc trong 9 giờ cần 30 công nhân. Nếu số công nhân giảm 12 người (với năng suất như sau) thì thời gian để hoàn thành công việc tăng đi mấy giờ ?

A. 15

B. 6

C. 9

D. 4

Đáp án: B

Giải thích:

Gọi thời gian để hoàn thành công việc sau khi giảm đi 12 người là x

(0 < x < 9)(giờ)

Từ bài ra ta có số công nhân và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch.

Nếu giảm đi 12 công nhân thì số công nhân sau khi tăng là:

30 - 12 = 18 công nhân

Theo bài ra ta có:

30.9 = 18.x  giờ

Do đó thời gian hoàn thành công việc giảm đi:

15-9 = 6 giờ

Câu 14: Một ô tô chạy từ A đến B với vận tốc 40 km/m thì hết 3 giờ 30 phút. Hỏi ô tô chạy từ A đến B với vận tốc 35 km/h thì hết bao nhiêu thời gian ?

A. 3,25 giờ

B. 4 giờ

C. 3 giờ

D. 2,5 giờ

Đáp án: B

Giải thích:

Đổi 3 giờ 30 phút = 3,5 giờ

Gọi thời gian ô tô chạy A đến B với vận tốc

35 km/h là x (x>0) (giờ)

Vì quãng đường đi không đổi nên vận tốc và thời gian là hai đại lượng tỉ lệ nghịch.

Theo bài ra ta có:

40.3,5=35x35x=140x=4 giờ

Vậy thời gian cần tìm là 4 giờ.

Câu 15: Ba đội máy cày, cày trên ba cánh đồng có diện tích như nhau. Đội thứ nhất hoàn thành công việc trong 4 ngày, đội thứ hai trong 6 ngày và đội thứ 3 trong 8 ngày. Hỏi đội thứ nhất có bao nhiêu máy cày, biết rằng đội thứ nhất có hơn đội thứ hai là 2 máy và công suất của các máy như nhau?

A. 10 máy

B. 4 máy

C. 6 máy

D. 8 máy

Đáp án: C

Giải thích:

Gọi số máy cày của ba đội lần lượt là

x; y; z (x; y; z > 0)

Vì diện tích ba cánh đồng là như nhau nên thời gian và số máy cày là hai đại lượng tỉ lệ nghịch

Theo bài ra ta có:

x.4 = y.6 = z.8 và x - y = 2

Suy ra: x6=y4

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

x6=y4=x-y6-4=22=1

Do đó x = 6 ; y = 4

Vậy đội thứ nhất có 6 máy

Câu 16: Ba đội công nhân đều làm khối lượng công việc như nhau. Đội 1 làm xong công việc trong 4 ngày, đội thứ hai làm xong công việc trong 6 ngày. Biết rằng, tổng số công nhân dội 1 và đội 2 gấp 5 lần số công nhân đội 3. Hỏi đội 3 làm xonzg công việc trong bao lâu ?

A. 25 ngày

B. 20 ngày

C. 12 ngày

D. 10 ngày

Đáp án: C

Giải thích:

Gọi thời gian hoàn thành công việc của ba đội lần lượt là 

t1, t2, t3 t1, t2, t3 >0(ngày).

Gọi số công nhân của ba đội lần lượt là x1, x2, x3 x1, x2, x3N* (người).

Theo đề bài, tổng số công nhân của đội 1 và đội 2 gấp 5 lần số công nhân của đội 3 nên ta có x1+x2=5x3

Vì số công nhân và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch nên ta có:

x1.t1=x2.t2=x3.t3x11t1=x21t2=x31t3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x11t1=x21t2=x31t3=x1+x214+16=5x314+16=5x3512=12x3x31t3=12x31t3.12x3=x3t3=12x3x3=12

Vậy đội 3 làm xong công việc trong 12 ngày.

Câu 17: Để làm một công việc trong 12 giờ cần 45 công nhân. Nếu số công nhân tăng thêm 15 người (với năng suất như sau) thì thời gian để hoàn thành công việc giảm đi mấy giờ ?

A. 3

B. 6

C. 9

D. 4

Đáp án: A

Giải thích:

Gọi thời gian để hoàn thành công việc sau khi tăng thêm 15 người là x

(0 < x < 12) (giờ)

Từ bài ra ta có số công nhân và thời gian hoàn thành công việc là hai đại lượng tỉ lệ nghịch.

Nếu tăng thêm 15 công nhân thì số công nhân sau khi tăng là:

45+15 = 60 công nhân

Theo bài ra ta có:

45.12=60x60x=540x=9 giờ

Do đó thời gian hoàn thành công việc giảm đi

12 - 9 = 3 giờ

Các câu hỏi trắc nghiệm Toán lớp 7 có đáp án, chọn lọc khác:

Trắc nghiệm Hàm số có đáp án

Trắc nghiệm Mặt phẳng tọa độ có đáp án

Trắc nghiệm Đồ thị của hàm số y = ax có đáp án

Trắc nghiệm Bài ôn tập chương 2 có đáp án

Trắc nghiệm Thu thập số liệu thống kê - Tần số có đáp án

1 1,303 02/04/2022
Tải về


Xem thêm các chương trình khác: