Giải Toán 8 trang 136 Tập 2 Kết nối tri thức
Với giải bài tập Toán 8 trang 136 Tập 2 trong Bài tập ôn tập cuối năm sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 8 trang 136 Tập 2.
Giải Toán 8 trang 136 Tập 2
a) Hỏi tứ giác AHCK là hình gì?
b) Hình bình hành ABCD phải thỏa mãn điều kiện gì để tứ giác AHCK là:
Lời giải:
a) Vì O là giao điểm của hai đường chéo AC và BD nên O là trung điểm của AC và BD.
Ta có H là trung điểm của BO suy ra HB = HO = ;
K là trung điểm của OD nên OK = KD = .
Mà OB = OD (O là trung điểm của BD) nên OK = OH, suy ra O là trung điểm của HK.
Tứ giác AHCK có O là trung điểm của hai đường chéo AC và HK.
Suy ra tứ giác AHCK là hình bình hành.
b)
+ Muốn tứ giác AHCK là hình thoi ta cần thêm điều kiện hai đường chéo AC và HK vuông góc với nhau, cũng có nghĩa là hai đường chéo của hình bình hành ABCD vuông góc với nhau, vậy để tứ giác AHCK là hình thoi thì tứ giác ABCD là hình thoi.
+ Muốn tứ giác AHCK là hình chữ nhật, ta cần thêm điều kiện hai đường chéo AC và HK bằng nhau, cũng có nghĩa là đường chéo AC của hình bình hành ABCD bằng nửa đường chéo BD (Do H, K lần lượt là trung điểm của OB và OD).
Vậy để tứ giác AHCK là hình chữ nhật điều kiện là: ABCD có đường chéo BD dài gấp hai lần đường chéo AC.
+ Tứ giác AHCK là hình vuông khi nó vừa là hình thoi, vừa là hình chữ nhật. Muốn vậy, thêm kết quả hai câu trên, tứ giác ABCD thỏa mãn điều kiện vừa là hình thoi và vừa có đường chéo BD dài gấp hai lần đường chéo AC.
a) Chứng minh rằng tứ giác DEKI là hình bình hành.
b) Biết AF = 6 cm. Tính độ dài các đoạn thẳng DI và EK.
Lời giải:
a) Xét tam giác ABC có:
CD là đường trung tuyến của tam giác ABC nên D là trung điểm của AB
BE là đường trung tuyến của tam giác ABC nên E là trung điểm của AC
Do đó, DE là đường trung bình của tam giác ABC.
Suy ra DE // BC và (1).
Tương tự, có IK là đường trung bình của tam giác GBC.
Suy ra IK // BC và (2).
Từ (1) và (2), suy ra DE // IK và DE = IK.
Vậy DEKI là hình bình hành.
b) Có điểm G là trọng tâm của tam giác ABC.
Suy ra AG = AF = = 4 cm.
Lại có E và K lần lượt là trung điểm của AC và CG nên EK là đường trung bình của tam giác CAG, do đó EK = AG = = 2 cm.
Vì DEKI là hình bình hành nên DI = EK = 2 cm.
Lời giải:
Kẹp vật vào giữa bản kim loại và thước như cách sử dụng, ta gọi B'C' là đoạn ứng với bề dày d cần đo của vật (nghĩa là d = B'C'). Dễ thấy B'C' // BC vì cùng vuông góc với AC. Do đó, ∆AB'C' ∽ ∆ABC, suy ra .
Vì BC = 1 cm, AC = 10 cm nên .
Vậy bề dày d của vật đúng bằng độ dài (cm) của đoạn AC'. Do đó, chẳng hạn trên thước đo, AC' = 5,5 cm thì có nghĩa là cm = 5,5 mm.
c) Cho biết AB = 6 cm, BC = 3 cm. Tính EF.
Lời giải:
a) Do BE là đường phân giác của góc B nên ta có (1).
Tương tự với đường phân giác CF ta có (2).
Do tam giác ABC cân tại A nên BA = AC, kết hợp với (1) và (2) suy ra
Do đó, theo định lí Thalès đảo ta có EF // BC. Suy ra ∆BIC ∽ ∆EIF.
b) Ta có (do BE là đường phân giác của góc B)
(do CF là đường phân giác của góc C)
(do tam giác ABC cân tại A).
Do đó, .
Hai tam giác BFI và CFB có góc F chung và (chứng minh trên).
Do đó ∆BFI ∽ ∆CFB (g.g).
Suy ra (đpcm).
c) Theo câu a) ta có hay .
Ta có EF // BC (chứng minh trên), do đó
.
Từ đó ta có cm.
Xem thêm Lời giải bài tập Toán 8 Kết nối tri thức hay, chi tiết khác:
Xem thêm Lời giải bài tập Toán 8 Kết nối tri thức hay, chi tiết khác:
Bài 1 trang 135 Toán 8 Tập 2: Rút gọn các biểu thức sau: a) (2x + y)2 + (5x – y)2 + 2(2x + y)(5x – y);...
Bài 2 trang 135 Toán 8 Tập 2: Cho đa thức P = x2 – y2 + 6x + 9. a) Phân tích đa thức P thành nhân tử...
Bài 3 trang 135 Toán 8 Tập 2: Cho đa thức f(x) = x2 – 15x + 56. a) Phân tích đa thức f(x) thành nhân tử. b) Tìm x sao cho f(x) = 0...
Bài 4 trang 135 Toán 8 Tập 2: Cho phân thức a) Viết điều kiện xác định và rút gọn phân thức P...
Bài 6 trang 135 Toán 8 Tập 2: Bảng giá cước của một hãng taxi như sau...
Bài 7 trang 135 Toán 8 Tập 2: Với giá trị nào của m, đường thẳng y = mx + 1 (m ≠ 0): a) song song với đường thẳng y = 3x...
Bài 13 trang 137 Toán 8 Tập 2: Cho bảng thống kê sau: Để so sánh số lượng học sinh ở mỗi mức xếp loại của hai ta nên dùng biểu đồ nào? Hãy vẽ biểu đồ đó...
Xem thêm Lời giải bài tập Toán 8 Kết nối tri thức hay, chi tiết khác:
Bài tập cuối chương 10 trang 123
Một vài ứng dụng của hàm số bậc nhất trong tài chính
Ứng dụng định lí Thalès, định lí Pythagore và tam giác đồng dạng để đo chiều cao, khoảng cách
Thực hành tính toán trên phân thức đại số và vẽ đồ thị hàm số với phần mềm GeoGebra
Xem thêm các chương trình khác:
- Soạn văn 8 Kết nối tri thức (hay nhất)
- Văn mẫu lớp 8 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 8 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn lớp 8 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 8 - Kết nối tri thức
- Giải SBT Ngữ văn 8 – Kết nối tri thức
- Giải Vở thực hành Ngữ văn 8 Kết nối tri thức | VTH Ngữ văn 8 Tập 1, Tập 2
- Nội dung chính tác phẩm Ngữ văn lớp 8 – Kết nối tri thức
- Soạn văn 8 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 8 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 8 – Global success
- Giải sbt Tiếng Anh 8 - Global Success
- Trọn bộ Từ vựng Tiếng Anh 8 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 8 Global success
- Giải sgk Khoa học tự nhiên 8 – Kết nối tri thức
- Lý thuyết Khoa học tự nhiên 8 – Kết nối tri thức
- Giải sbt Khoa học tự nhiên 8 – Kết nối tri thức
- Giải vth Khoa học tự nhiên 8 – Kết nối tri thức
- Giải sgk Lịch sử 8 – Kết nối tri thức
- Lý thuyết Lịch sử 8 - Kết nối tri thức
- Giải sbt Lịch sử 8 – Kết nối tri thức
- Giải sgk Địa lí 8 – Kết nối tri thức
- Lý thuyết Địa lí 8 - Kết nối tri thức
- Giải sbt Địa lí 8 – Kết nối tri thức
- Giải VTH Địa lí 8 Kết nối tri thức | Vở thực hành Địa lí 8
- Giải sgk Giáo dục công dân 8 – Kết nối tri thức
- Lý thuyết Giáo dục công dân 8 – Kết nối tri thức
- Giải sbt Giáo dục công dân 8 – Kết nối tri thức
- Giải sgk Công nghệ 8 – Kết nối tri thức
- Lý thuyết Công nghệ 8 - Kết nối tri thức
- Giải sbt Công nghệ 8 – Kết nối tri thức
- Giải sgk Tin học 8 – Kết nối tri thức
- Lý thuyết Tin học 8 - Kết nối tri thức
- Giải sbt Tin học 8 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 8 – Kết nối tri thức