Bài 9 trang 136 Toán 8 Tập 2 | Kết nối tri thức Giải Toán lớp 8

Lời giải Bài 9 trang 136 Toán 8 Tập 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 8.

1 180 28/12/2023


Giải Toán 8 Bài tập ôn tập cuối năm

Bài 9 trang 136 Toán 8 Tập 2: Cho tam giác ABC. Các đường trung tuyến AF, BE và CD cắt nhau tại G. Gọi I, K theo thứ tự là trung điểm của BG và CG.

a) Chứng minh rằng tứ giác DEKI là hình bình hành.

b) Biết AF = 6 cm. Tính độ dài các đoạn thẳng DI và EK.

Lời giải:

Bài 9 trang 136 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

a) Xét tam giác ABC có:

CD là đường trung tuyến của tam giác ABC nên D là trung điểm của AB

BE là đường trung tuyến của tam giác ABC nên E là trung điểm của AC

Do đó, DE là đường trung bình của tam giác ABC.

Suy ra DE // BC và DE=12BC (1).

Tương tự, có IK là đường trung bình của tam giác GBC.

Suy ra IK // BC và IK=12BC (2).

Từ (1) và (2), suy ra DE // IK và DE = IK.

Vậy DEKI là hình bình hành.

b) Có điểm G là trọng tâm của tam giác ABC.

Suy ra AG = 23AF =23.6 = 4 cm.

Lại có E và K lần lượt là trung điểm của AC và CG nên EK là đường trung bình của tam giác CAG, do đó EK = 12AG = 12.4 = 2 cm.

Vì DEKI là hình bình hành nên DI = EK = 2 cm.

1 180 28/12/2023


Xem thêm các chương trình khác: