Giải Toán 7 trang 81 Tập 1 Kết nối tri thức

Với giải bài tập Toán lớp 7 trang 81 Tập 1 trong Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 7 trang 81 Tập 1.

1 481 07/01/2023


Giải Toán 7 trang 81 Tập 1

HĐ 1 trang 81 Toán 7 Tập 1Quan sát tam giác ABC cân tại A như Hình 4.60. Lấy D là trung điểm của đoạn thẳng BC.

a) Chứng minh rằng ΔABD=ΔACD theo trường hợp cạnh – cạnh – cạnh.

b) Hai góc B và C của tam giác ABC có bằng nhau không?

Tài liệu VietJack

Lời giải:

GT

ΔABC cân tại A, D là trung điểm của BC.

KL

a) ΔABD=ΔACD(c.c.c);

b) B^ và C^ của tam giác ABC có bằng nhau không?

Tài liệu VietJack

Chứng minh (hình vẽ trên):

a) Tam giác ABC cân tại A (theo giả thiết) nên ta có AB = AC (định nghĩa tam giác cân).

Xét tam giác ABD và tam giác ACD có:

AB = AC (chứng minh trên);

BD = CD (do D là trung điểm của BC);

AD là cạnh chung.

Vậy ΔABD=ΔAC(c.c.c).

b) Từ ΔABD=ΔAC(chứng minh câu a) suy ra ABD^=ACD^ (hai góc tương ứng).

Hay B^=C^.

Vậy góc B^ và C^ của tam giác ABC cân tại A bằng nhau. 

HĐ 2 trang 81 Toán 7 Tập 1:

Cho tam giác MNP có M^=N^. Vẽ tia phân giác PK của góc MPN (KMN).

Chứng minh rằng:

a) MKP^=NKP^;                                

b) ΔMPK=ΔNPK;

c) Tam giác MNP có cân tại P không?

Tài liệu VietJack

Lời giải:

GT

ΔMNPM^=N^;

PK là tia phân giác của góc MPN.

KL

a) MKP^=NKP^; 

b) ΔMPK=ΔNPK;

c) Tam giác MNP có cân tại P không?

Tài liệu VietJack

Chứng minh (hình vẽ trên):

a) PK là tia phân giác của góc MPN (theo giả thiết) nên MPK^=NPK^ (tính chất tia phân giác của một góc).

Tam giác MPK có NKP^ là góc ngoài của tam giác tại đỉnh K nên ta có NKP^=MPK^+M^.

Tam giác NPK có MKP^ là góc ngoài của tam giác tại đỉnh K nên ta có MKP^=NPK^+N^.

Mà MPK^=NPK^ (chứng minh trên) và M^=N^ (theo giả thiết).

Do đó MKP^=NKP^.

b) Xét tam giác MPK và tam giác NPK có:

MPK^=NPK^ (chứng minh ở câu a);

PK là cạnh chung;

MKP^=NKP^ (chứng minh ở câu a).

Vậy ΔMPK=ΔNPK (g.c.g).

c) Từ ΔMPK=ΔNPK (chứng minh ở câu b) suy ra MP = NP (hai cạnh tương ứng).

Do đó tam giác MNP cân tại P (định nghĩa tam giác cân).

Vậy tam giác MNP cân tại P.

Luyện tập 1 trang 81 Toán 7 Tập 1: Tính số đo các góc và các cạnh chưa biết của tam giác DEF trong Hình 4.62.

Tài liệu VietJack

Lời giải:

GT

ΔDEF, EF = DF = 4 cm, E^=60°.

KL

Tính số đo D^,F^ và độ dài cạnh DE.

Tài liệu VietJack

Tam giác DEF có EF = DF = 4 cm (theo giả thiết) nên tam giác DEF cân tại F (định nghĩa tam giác cân).

Do đó D^=E^ (tính chất tam giác cân).

Mà E^=60° (theo giả thiết) nên D^=60°.

Tam giác DEF có D^=60°E^=60°, áp dụng định lí tổng ba góc trong một tam giác ta có D^+E^+F^=180°.

Suy ra F^=180°D^E^ 

Hay F^=180°60°60°=60°. 

Khi đó ta có E^=F^=60°.

Suy ra tam giác DEF cân tại D (dấu hiệu nhận biết tam giác cân).

Do đó DE = DF (định nghĩa tam giác cân).

Mà DF = 4 cm (theo giả thiết).

Vậy DE = 4 cm. 

Thử thách nhỏ trang 81 Toán 7 Tập 1:

Một tam giác có gì đặc biệt nếu thỏa mãn một trong các điều kiện sau:

a) Tam giác có ba góc bằng nhau.

b) Tam giác cân có một góc bằng 60o.

Lời giải:

a)

Tài liệu VietJack

Áp dụng định lí tổng ba góc trong tam giác cho tam giác ABC ta có A^+B^+C^=180°.

Mà A^=B^=C^ (theo giả thiết);

Suy ra A^+A^+A^=180° hay 3.A^=180°.

Do đó A^=60°. 

Khi đó A^=B^=C^=60°.

Tam giác ABC có ba góc bằng nhau và cùng bằng 60° nên là tam giác đều.

b) +) Tam giác DEF cân tại D có E^=60°. 

Tài liệu VietJack

Tam giác DEF cân tại D (theo giả thiết) nên E^=F^ (tính chất tam giác cân).

Mà E^=60°, do đó F^=60°. 

Tam giác DEF có E^=60°F^=60°, áp dụng định lí tổng ba góc trong một tam giác ta có D^+E^+F^=180°.

Suy ra D^=180°E^F^ 

Hay D^=180°60°60°=60°. 

Khi đó ta có D^=E^=F^=60°.

Tam giác DEF có ba góc bằng nhau và cùng bằng 60° nên là tam giác đều.

+) Tam giác MNP cân tại M có M^=60°. 

Tài liệu VietJack

Tam giác MNP cân tại M (theo giả thiết) nên N^=P^ (tính chất tam giác cân).

Tam giác MNP có M^=60°N^=P^, áp dụng định lí tổng ba góc trong một tam giác ta có M^+N^+P^=180°.

Suy ra 60°+N^+N^=180° 

Hay 2.N^=180°60°

 2.N^=120°

N^=60°.

Khi đó M^=N^=P^=60°.

Tam giác MNP có ba góc bằng nhau và cùng bằng 60° nên là tam giác đều. 

HĐ 3 trang 81 – 82 Toán 7 Tập 1Đánh dấu hai điểm A và B nằm trên hai mép tờ giấy A4, nối A và B để được đoạn thẳng AB.

Gấp mảnh giấy lại như Hình 4.63 sao cho vị trí các điểm A và B trùng nhau.

Mở mảnh giấy ra, kẻ đường thẳng d theo nếp gấp.

a) Gọi O là giao điểm của đường thẳng d và AB. O có là trung điểm của đoạn thẳng AB không?

b) Dùng thước đo góc, kiểm tra đường thẳng d có vuông góc với AB không?

Tài liệu VietJack

Lời giải:

Tài liệu VietJack

Mảnh giấy sau khi gấp được mô tả như hình vẽ trên.             

a) Mảnh giấy được gấp sao cho điểm A trùng với điểm B, O là giao điểm của đường thẳng d và AB, khi đó đường thẳng d chia đoạn thẳng AB thành hai đoạn bằng nhau, tức là OA = OB.

Do đó O là trung điểm của đoạn thẳng AB.

b) Dùng thước đo góc ta thấy góc dOB có số đo bằng 90° nên dAB. 

Vậy đường thẳng d vuông góc với AB.

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Giải Toán 7 trang 80 Tập 1

Giải Toán 7 trang 82 Tập 1

Giải Toán 7 trang 83 Tập 1

Giải Toán 7 trang 84 Tập 1

1 481 07/01/2023


Xem thêm các chương trình khác: