Giải Toán 7 (Kết nối tri thức): Luyện tập chung trang 83
Với giải bài tập Toán lớp 7: Luyện tập chung trang 83 sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 7 .
Giải bài tập Toán 7 : Luyện tập chung trang 83
Bài 9.31 trang 83 Toán 7 Tập 2:
Lời giải:
Giả sử ABC có AM vừa là đường trung tuyến, vừa là đường cao xuất phát từ đỉnh A.
Do AM là đường trung tuyến của tam giác ABC nên M là trung điểm của BC.
Do đó BM = CM.
Xét ABM và ACM có:
,
AM là cạnh chung.
BM = CM (chứng minh trên).
Suy ra ABM và ACM (hai cạnh góc vuông).
Do đó AB = AC (hai cạnh tương ứng).
Tam giác ABC có AB = AC nên tam giác ABC cân tại A.
Bài 9.32 trang 83 Toán 7 Tập 2:
Lời giải:
Xét DMNC có NB ⊥ MC, CB ⊥ MN.
Mà NB cắt CB tại B nên B là trực tâm của MNC.
Do đó BM ⊥ CN.
Bài 9.33 trang 83 Toán 7 Tập 2:
Có một mảnh tôn hình tròn cần đục một lỗ ở tâm. Làm thế nào để xác định được tâm của mảnh tôn đó?
Lời giải:
Ta thực hiện theo các bước sau:
Bước 1. Xác định ba điểm A, B, C nằm trên rìa mảnh tôn.
Bước 2. Xác định ba đường trung trực của tam giác ABC.
Bước 3. Xác định giao điểm của ba đường trung trực của tam giác ABC.
Điểm đó là tâm của mảnh tôn.
Bài 9.34 trang 83 Toán 7 Tập 2:
Lời giải:
Gọi Ax là tia đối của tia AC.
Do At là tia phân giác của nên .
Do At // BC nên (hai góc đồng vị).
Do At // BC nên (hai góc so le trong).
Mà nên .
Xét ABC có nên ABC cân tại A.
Bài 9.35 trang 83 Toán 7 Tập 2:
Kí hiệu SABC là diện tích tam giác ABC. Gọi G là trọng tâm của tam giác ABC, M là trung điểm của BC.
Gợi ý. Sử dụng GM = AM để chứng minh SGBM = SABM, SGCM = SACM.
b) Chứng minh SGCA = SGAB = SABC.
Lời giải:
a) Do G là trọng tâm của tam giác ABC và M là trung điểm của BC nên GM = AM.
ABM và MBG có chung đường cao kẻ từ B đến AM nên tỉ số diện tích giữa MBG và ABM bằng tỉ số của hai đáy GM và AM.
Ta có GM = AM nên SMBG = SABM.
ACM và MCG có chung đường cao kẻ từ C đến AM nên tỉ số diện tích giữa MCG và ACM bằng tỉ số của hai đáy GM và AM.
Ta có GM = AM nên SMCG = SACM.
Do đó SMBG + SMCG = SABM + SACM
Hay SGBC = (SABM + SACM) = SABC.
b) Chứng minh tương tự câu a:
Do G là trọng tâm của ABC nên AG = 2GM suy ra SGCA = 2SMCG; SGAB = 2SMBG.
Do BC = 2MB = 2MC nên SGBC = 2SMCG = 2SMBG.
Do đó SGCA = SGAB = SGBC = SABC.
Xem thêm các bài giải sách giáo khoa Toán 7 bộ sách Kết nối tri thức hay, chi tiết khác:
Xem thêm các chương trình khác:
- Giải sgk Lịch sử 7 – Kết nối tri thức
- Lý thuyết Lịch Sử 7 – Kết nối tri thức
- Giải sbt Lịch sử 7 – Kết nối tri thức
- Giải VTH Lịch sử 7 – Kết nối tri thức
- Soạn văn lớp 7 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Soạn văn lớp 7 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Văn mẫu lớp 7 – Kết nối tri thức
- Giải VTH Ngữ văn lớp 7 – Kết nối tri thức
- Giải sgk Địa Lí 7 – Kết nối tri thức
- Lý thuyết Địa Lí 7 – Kết nối tri thức
- Giải sbt Địa lí 7 – Kết nối tri thức
- Giải VTH Địa lí 7 – Kết nối tri thức
- Giải sgk Tiếng Anh 7 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 7 Global Success - Kết nối tri thức
- Bài tập Tiếng Anh 7 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 7 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 7 Global success
- Giải sgk Giáo dục công dân 7 – Kết nối tri thức
- Lý thuyết GDCD 7 – Kết nối tri thức
- Giải sbt Giáo dục công dân 7 – Kết nối tri thức
- Giải vth Giáo dục công dân 7 – Kết nối tri thức
- Giải sgk Khoa học tự nhiên 7 – Kết nối tri thức
- Lý thuyết Khoa học tự nhiên 7 – Kết nối tri thức
- Giải sbt Khoa học tự nhiên 7 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm lớp 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Công nghệ 7 – Kết nối tri thức
- Lý thuyết Công nghệ 7 – Kết nối tri thức
- Giải sbt Công nghệ 7 – Kết nối tri thức
- Giải VTH Công nghệ 7 – KNTT
- Giải sgk Tin học 7 – Kết nối tri thức
- Lý thuyết Tin học 7 – Kết nối tri thức
- Giải sbt Tin học 7 – Kết nối tri thức
- Giải VTH Tin học 7 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 7 – Kết nối tri thức
- Giải sgk Âm nhạc 7 – Kết nối tri thức