Giải Toán 7 trang 57 Tập 1 Kết nối tri thức
Với giải bài tập Toán lớp 7 trang 57 Tập 1 trong Bài 11: Định lí và chứng minh định lí sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 7 trang Tập 1.
Giải Toán 7 trang 57 Tập 1
Lời giải:
GT |
và là hai góc kề bù; |
KL |
|
Chứng minh (Hình vẽ trên):
Theo giả thiết ta có và là hai góc kề bù nên (tính chất hai góc kề bù).
Mà ; .
Hay
Do đó
Suy ra
Vậy
Tranh luận trang 57 Toán 7 Tập 1:
Hình vuông: Tớ nghĩ đó là điều không đúng! Nhưng làm thế nào để khẳng định điều đó không đúng nhỉ?
Em có ý kiến gì về hai ý kiến trên?
Lời giải:
Nhận xét: Hai góc bằng nhau chưa chắc đã là hai góc đối đỉnh.
Ví dụ như hình vẽ sau:
Trong hình vẽ trên, hai góc xOz và góc tOy đều có số đo bằng 30° nhưng không phải là hai góc đối đỉnh do tia Oz là cạnh của góc xOz không là tia đối của tia Ot là cạnh của góc tOy.
Lời giải:
Định lí “Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau” có thể được suy ra trực tiếp từ định lí về dấu hiệu nhận biết hai đường thẳng song song.
GT |
c cắt a tại A, c cắt b tại B; Góc aAc và góc bBc là hai góc đồng vị. |
KL |
a // b. |
Chứng minh (Hình vẽ trên):
Theo giả thiết ta có tại A nên tại B nên
Suy ra
Mà hai góc này ở vị trí đồng vị.
Do đó a // b (dấu hiệu nhận biết hai đường thẳng song song).
Vậy a // b.
Lời giải:
GT |
a // b, c cắt a tại A, c cắt b tại B; Góc aAc và góc bBc là hai góc đồng vị. |
KL |
|
+) Chứng minh (Hình vẽ trên):
Theo giả thiết ta có tại A nên
Từ a // b suy ra (hai góc đồng vị).
Mà do đó
Suy ra tại B.
Vậy
+) Trong chứng minh trên ta đã sử dụng những điều đúng đã biết sau:
- Hai đường thẳng vuông góc với nhau tạo thành các góc có số đo bằng 90°.
- Một đường thắng cắt hai đường thẳng song song với nhau tạo thành cặp góc đồng vị có số đo bằng nhau.
Bài 3.26 trang 57 Toán 7 Tập 1: Cho góc xOy không phải góc bẹt. Khẳng định nào sau đây là đúng?
(1) Nếu Ot là tia phân giác của góc xOy thì
(2) Nếu tia Ot thỏa mãn thì Ot là tia phân giác của góc xOy.
Nếu có khẳng định không đúng, hãy nêu ví dụ cho thấy khẳng định đó không đúng.
(Gợi ý: Xét tia đối của một tia phân giác).
Lời giải:
Khẳng định (1) là khẳng định đúng, khẳng định (2) là khẳng định không đúng.
Ví dụ cho thấy khẳng định (2) không đúng:
Trong hình vẽ trên ta thấy tia Ot thoả mãn điều kiện nhưng không phải là tia phân giác của góc xOy.
Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Xem thêm các chương trình khác:
- Giải sgk Lịch sử 7 – Kết nối tri thức
- Lý thuyết Lịch Sử 7 – Kết nối tri thức
- Giải sbt Lịch sử 7 – Kết nối tri thức
- Giải VTH Lịch sử 7 – Kết nối tri thức
- Soạn văn lớp 7 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Soạn văn lớp 7 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Kết nối tri thức
- Văn mẫu lớp 7 – Kết nối tri thức
- Giải VTH Ngữ văn lớp 7 – Kết nối tri thức
- Giải sgk Địa Lí 7 – Kết nối tri thức
- Lý thuyết Địa Lí 7 – Kết nối tri thức
- Giải sbt Địa lí 7 – Kết nối tri thức
- Giải VTH Địa lí 7 – Kết nối tri thức
- Giải sgk Tiếng Anh 7 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 7 Global Success - Kết nối tri thức
- Bài tập Tiếng Anh 7 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 7 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 7 Global success
- Giải sgk Giáo dục công dân 7 – Kết nối tri thức
- Lý thuyết GDCD 7 – Kết nối tri thức
- Giải sbt Giáo dục công dân 7 – Kết nối tri thức
- Giải vth Giáo dục công dân 7 – Kết nối tri thức
- Giải sgk Khoa học tự nhiên 7 – Kết nối tri thức
- Lý thuyết Khoa học tự nhiên 7 – Kết nối tri thức
- Giải sbt Khoa học tự nhiên 7 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm lớp 7 - KNTT
- Giải sgk Hoạt động trải nghiệm 7 - KNTT
- Giải sgk Công nghệ 7 – Kết nối tri thức
- Lý thuyết Công nghệ 7 – Kết nối tri thức
- Giải sbt Công nghệ 7 – Kết nối tri thức
- Giải VTH Công nghệ 7 – KNTT
- Giải sgk Tin học 7 – Kết nối tri thức
- Lý thuyết Tin học 7 – Kết nối tri thức
- Giải sbt Tin học 7 – Kết nối tri thức
- Giải VTH Tin học 7 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 7 – Kết nối tri thức
- Giải sgk Âm nhạc 7 – Kết nối tri thức