Công thức tính Cấp số cộng và cách giải các dạng bài tập (2024) chi tiết nhất
Với Công thức cấp số cộng Toán lớp 11 chi tiết nhất giúp học sinh dễ dàng nhớ toàn bộ các công thức về giá trị tuyệt đối của một số hữu tỉ từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Công thức cấp số cộng - Toán lớp 11
I. Lý thuyết Cấp số cộng
1) Định nghĩa
(un) là cấp số cộng khi (d gọi là công sai)
Nhận xét:
- Cấp số cộng (un) là một dãy số tăng khi và chỉ khi công sai d > 0.
- Cấp số cộng (un) là một dãy số giảm khi và chỉ khi công sai d < 0.
- Đặc biệt, khi d = 0 thì cấp số cộng là một dãy số không đổi (tất cả các số hạng đều bằng nhau).
2) Số hạng tổng quát của cấp số cộng (un) được xác định bởi công thức:
un = u1 + (n – 1)d với .
3) Tính chất
Ba số hạng là ba số hạng liên tiếp của cấp số cộng khi và chỉ khi .
II. Công thức cấp số cộng
- Công thức tính công sai: d = un+1 – un với .
- Công thức tìm số hạng tổng quát: un = u1 + (n – 1)d với .
- Tính chất của 3 số hạng liên tiếp của cấp số cộng: .
- Tổng n số hạng đầu tiên của cấp số cộng: .
III. Ví dụ minh họa
Ví dụ 1: Cho cấp số cộng (un) thỏa mãn:
a) Xác định công sai và số hạng đầu tiên của cấp số cộng.
b) Xác định công thức số hạng tổng quát của cấp số cộng.
c) Tính số hạng thứ 100 của cấp số cộng.
d) Tính tổng 15 số hạng đầu tiên của cấp số cộng.
Lời giải
a) Gọi d là công sai của cấp số cộng, ta có:
Vậy công sai d = 3 và số hạng đầu tiên u1 = 1.
b) Số hạng tổng quát: un = u1 + (n – 1)d = 1 + (n – 1).3 = 3n – 2.
c) Số hạng thứ 100 là: u100 = 3.100 – 2 = 298.
d) Tổng 15 số hạng đầu tiên:
Ví dụ 2: Cho cấp số cộng (un) thỏa mãn: un = 2n – 3.
a) Xác định công sai của cấp số cộng.
b) Số 393 là số hạng thứ bao nhiêu của cấp số cộng.
c) Tính S = u1 + u3 + u5 + … + u2021.
Lời giải
a) Ta có: un + 1 = 2(n + 1) – 3 = 2n – 1
Công sai của cấp số cộng: d = un+1 – un = (2n – 1) – (2n – 3) = 2
b) Gọi số hạng thứ k của cấp số cộng là 393, ta có uk = 393.
Khi đó: 2k – 3 = 393. Suy ra k = 198.
Vậy số 393 là số hạng thứ 198 của cấp số cộng.
c) Ta có: u1 = 2 . 1 – 3 = – 1
Dãy số là (vn): u1; u3; u5; … u2021 là cấp số cộng với số hạng đầu tiên là u1 = – 1 và công sai d’ = u3 – u1 = 2d = 4
Dãy (vn) có: (2021 – 1) : 2 + 1 = 1011 số hạng
Vậy tổng .
IV. Bài tập
Bài 1: Cho cấp số cộng (un) có u1 = 1 và d = – 3.
a) Xác định số hạng tổng quát của cấp số cộng
b) Tìm số hạng thứ 2021 của cấp số cộng
c) Số – 488 là số hạng thứ bao nhiêu của cấp số cộng.
Lời giải
a) Số hạng tổng quát:
un = u1 + (n – 1)d = 1 + (n – 1).(– 3) = – 3n + 4.
b) Số hạng thứ 2021 của cấp số cộng:
u2021 = – 3.2021 + 4 = – 6059.
c) Gọi số hạng thứ k là số – 488, ta có: uk = – 3k + 4 = – 488. Suy ra k = 164.
Vậy số – 488 là số hạng thứ 164.
Bài 2: Cho cấp số cộng (un) thỏa mãn
a) Tìm u1; d?
b) Xác định số hạng tổng quát của cấp số cộng.
c) Số –1372,5 là số hạng thứ bao nhiêu của cấp số cộng.
Lời giải
a) Ta có:
Vậy
b) Số hạng tổng quát:
c) Gọi số hạng thứ k là số – 1372,5, ta có:
Vậy số – 1372,5 là số hạng thứ 200.
Xem thêm tổng hợp công thức môn Toán lớp 9 đầy đủ và chi tiết khác:
Công thức tính công sai của cấp số cộng
Công thức tìm số hạng tổng quát của cấp số cộng
Xem thêm các chương trình khác:
- Giải sgk Hóa học 11 | Giải bài tập Hóa học 11 Học kì 1, Học kì 2 (Sách mới)
- Lý thuyết Hóa học 11(sách mới) | Kiến thức trọng tâm Hóa 11
- Giải sbt Hóa học 11 (sách mới) | Sách bài tập Hóa học 11
- Các dạng bài tập Hóa học lớp 11
- Giáo án Hóa học lớp 11 mới nhất
- Tóm tắt tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 11 (hay nhất) | Để học tốt Ngữ Văn 11 (sách mới)
- Soạn văn 11 (ngắn nhất) | Để học tốt Ngữ văn 11 (sách mới)
- Tác giả tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Văn mẫu 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 11 (thí điểm)
- Giải sgk Tiếng Anh 11 | Giải bài tập Tiếng anh 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Tiếng Anh 11 (sách mới) | Sách bài tập Tiếng Anh 11
- Giải sbt Tiếng Anh 11 (thí điểm)
- Giải sgk Lịch sử 11 | Giải bài tập Lịch sử 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Lịch Sử 11(sách mới) | Kiến thức trọng tâm Lịch Sử 11
- Giải Tập bản đồ Lịch sử 11
- Giải sgk Vật Lí 11 | Giải bài tập Vật lí 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Vật Lí 11 (sách mới) | Sách bài tập Vật Lí 11
- Lý thuyết Vật Lí 11 (sách mới) | Kiến thức trọng tâm Vật Lí 11
- Các dạng bài tập Vật Lí lớp 11
- Giáo án Vật lí lớp 11 mới nhất
- Giải sgk Sinh học 11 | Giải bài tập Sinh học 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Sinh học 11 (sách mới) | Kiến thức trọng tâm Sinh 11
- Giải sgk Giáo dục công dân 11
- Lý thuyết Giáo dục công dân 11
- Lý thuyết Địa Lí 11 (sách mới) | Kiến thức trọng tâm Địa lí 11
- Giải Tập bản đồ Địa Lí 11
- Giải sgk Giáo dục quốc phòng - an ninh 11