50 bài tập về Cách tính GTNN - GTLN của hàm số lượng giác (có đáp án 2024) chi tiết nhất
Với cách tính GTNN - GTLN của hàm số lượng giác môn Toán lớp 11 Đại số và Giải tích gồm phương pháp giải chi tiết, bài tập minh họa có lời giải và bài tập tự luyện sẽ giúp học sinh biết cách làm bài tập tính GTNN - GTLN của hàm số lượng giác lớp 11. Mời các bạn đón xem:
Cách tính GTNN - GTLN của hàm số lượng giác chi tiết nhất - Toán lớp 11
1. Lý thuyết
a) Cho hàm số y = f(x) xác định trên miền .
- Số thực M được gọi là giá trị lớn nhất của hàm số y = f(x) trên D nếu
- Số thực m được gọi là giá trị nhỏ nhất của hàm số y = f(x) trên D nếu
b) Tính bị chặn của hàm số lượng giác:
2. Các dạng bài tập
Dạng 1. Sử dụng tính bị chặn của hàm số lượng giác
Phương pháp giải:
Ví dụ minh họa:
Ví dụ 1: Tìm giá trị lớn nhất và nhỏ nhất của các hàm số:
a) y = sin2x + 3
b) y = 4sin2xcos2x +1
c) y = 5 – 3cos23x
Lời giải
a) Ta có:
Vậy hàm số y = sin2x + 3 có giá trị lớn nhất là 4 và giá trị nhỏ nhất là 2.
b) y = 4sin2xcos2x +1 = 2sin4x + 1
Ta có:
Vậy hàm số y = 4sin2xcos2x +1 có giá trị lớn nhất là 3 và giá trị nhỏ nhất là -1.
c) Ta có:
Vậy hàm số y = 5 – 3cos23x có giá trị lớn nhất là 5 và giá trị nhỏ nhất là 2.
Ví dụ 2: Tìm giá trị lớn nhất và nhỏ nhất của các hàm số:
a)
b) y = cos2x + 4sinx - 5
c) y = 4|cos(3x-1)| + 1
Lời giải
a) Điều kiện xác định: (Luôn đúng với mọi x)
Tập xác định D = R.
Ta có:
Vậy hàm số có giá trị lớn nhất là và giá trị nhỏ nhất là 1.
b) y = cos2x + 4sinx – 5
= 1 – 2sin2x + 4sinx – 5
= -2sin2x + 4sinx – 4
= -2(sin2x – 2sinx + 1) – 2
= -2(sinx – 1)2 – 2
Ta có:
Vậy hàm số y = cos2x + 4sinx – 5 có giá trị lớn nhất là -2 và giá trị nhỏ nhất là -10.
c) Ta có:
Vậy hàm số y = 4|cos(3x-1)| + 1 có giá trị lớn nhất là 5 và giá trị nhỏ nhất là 1.
Dạng 2. Hàm số có dạng y = asinx + bcosx + c (với a, b khác 0)
Phương pháp giải:
Bước 1: Ta đưa hàm số về dạng chỉ chứa sin[u(x)] hoặc cos[u(x)]:
y = asinx + bcosx + c
với thỏa mãn
Bước 2: Đánh giá
Ví dụ minh họa:
Ví dụ 1: Tìm giá trị lớn nhất và nhỏ nhất của hàm số:
a)
b) y = 3sinx + 4cosx + 6
Lời giải
a)
Ta có:
Vậy hàm số có giá trị lớn nhất là 3 và giá trị nhỏ nhất là -1.
b) y = 3sinx + 4cosx + 6
Đặt và (vì )
Ta được: .
Ta có:
Vậy hàm số y = 3sinx + 4cosx + 6 có giá trị lớn nhất là 11 và giá trị nhỏ nhất là 1.
Ví dụ 2: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
Lời giải
Ta có:
Vậy hàm số có giá trị lớn nhất là 3 và giá trị nhỏ nhất là -1.
Dạng 3: Hàm số có dạng
Lý thuyết: Phương trình có nghiệm khi (Lý thuyết có trong phần 7)
Phương pháp giải:
Bước 1: Điều kiện xác định: .
Bước 2:
(*)
Bước 3: Để phương trình (*) có nghiệm x thì
Tìm đoạn chứa y, sau đó đưa ra kết luận về giá trị lớn nhất và giá trị nhỏ nhất.
Ví dụ minh họa:
Ví dụ 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:
Lời giải
Điều kiện xác định:
Ta có: sinx + cosx + 2
Do đó .
Tập xác định: D = R.
Ta có
(*)
Để phương trình (*) có nghiệm x thì
Vậy hàm số có giá trị lớn nhất là 1 và giá trị nhỏ nhất là -2.
Ví dụ 2: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:
Lời giải
Điều kiện xác định:
Ta có: sinx – cosx + 3
Do đó .
Tập xác định: D = R.
Ta có:
(*)
Để phương trình (*) có nghiệm x thì
Vậy hàm số có giá trị lớn nhất là và giá trị nhỏ nhất là .
3. Bài tập tự luyện
Câu 1. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y=2sin5x – 1
A. min y = -3, max y = 3
B. min y = -1, max y = 1
C. min y = -1, max y=3
D. min y = -3, max y = 1
Câu 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số
A. min y = -2, max y = 4
B. min y = 2, max y = 4
C. min y = -2, max y = 3
D. min y = -1, max y = 4
Câu 3. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số
A. max y = 1, min y = 0
B. max y = 2, min y = 0
C. max y = 1, min y = -1
D. max y = 2, min y = 1
Câu 4. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số
A. min y = 2, max y = 5
B. min y = 1, max y = 4
C. min y = 1,max y = 5
D. min y = 1, max y = 3
Câu 5. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số
A. , min y = 1
B. ,
C. , min y = 2
D. , min y = 3
Câu 6. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số
A.
B.
C.
D.
Câu 7. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = 3 – 2cos23x
A. min y = 1, max y = 2
B. min y = 1, max y = 3
C. min y = 2, max y = 3
D. min y = -1, max y = 3
Câu 8. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = sin2x – 4sinx + 5
A. max y = 9, min y = 2
B. max y = 10, min y = 2
C. max y = 6, min y = 1
D. max y = 5, min y = 1
Câu 9. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = cos2x + 4cosx – 2
A. max y = 3, min y = -7
B. max y = -1, min y = -5
C. max y = 4, min y = -1
D. max y = 3, min y = -5
Câu 10. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = 3sin x + 4cosx + 1
A. max y = 6, min y = -2
B. max y = 4, min y = -4
C. max y = 6, min y = -4
D. max y = 6, min y = -1
Câu 11. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số
A. min y = 2, max y = 4
B. min y = 2, max y = 6
C. min y = 4, max y = 6
D. min y = 2, max y = 8
Câu 12. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = 4sin 6x + 3cos 6x
A. min y = -5, max y = 5
B. min y = -4, max y = 4
C. min y = -3, max y = 5
D. min y = -6, max y = 6
Câu 13. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = 2sin2x + 3sin2x – 4cos2x
A.
B.
C.
D.
Câu 14. Giá trị lớn nhất của hàm số là
A. 1
B.
C.
D. 2
Câu 15. Gọi M, m lần lượt là giá trị nhỏ nhất của hàm số . Giá trị của M+m là:
A.
B.
C.
D.
Bảng đáp án
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
D |
A |
D |
C |
A |
A |
B |
B |
D |
C |
B |
A |
B |
A |
B |
Xem thêm các dạng bài tập Toán lớp 9 có đáp án và lời giải chi tiết khác:
Cách giải phương trình lượng giác cơ bản chi tiết nhất
Phương trình bậc nhất đối với hàm số lượng giác và cách giải
Phương trình bậc hai đối với hàm số lượng giác và cách giải
Xem thêm các chương trình khác:
- Giải sgk Hóa học 11 | Giải bài tập Hóa học 11 Học kì 1, Học kì 2 (Sách mới)
- Lý thuyết Hóa học 11(sách mới) | Kiến thức trọng tâm Hóa 11
- Giải sbt Hóa học 11 (sách mới) | Sách bài tập Hóa học 11
- Các dạng bài tập Hóa học lớp 11
- Giáo án Hóa học lớp 11 mới nhất
- Tóm tắt tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 11 (hay nhất) | Để học tốt Ngữ Văn 11 (sách mới)
- Soạn văn 11 (ngắn nhất) | Để học tốt Ngữ văn 11 (sách mới)
- Tác giả tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Văn mẫu 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 11 (thí điểm)
- Giải sgk Tiếng Anh 11 | Giải bài tập Tiếng anh 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Tiếng Anh 11 (sách mới) | Sách bài tập Tiếng Anh 11
- Giải sbt Tiếng Anh 11 (thí điểm)
- Giải sgk Lịch sử 11 | Giải bài tập Lịch sử 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Lịch Sử 11(sách mới) | Kiến thức trọng tâm Lịch Sử 11
- Giải Tập bản đồ Lịch sử 11
- Giải sgk Vật Lí 11 | Giải bài tập Vật lí 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Vật Lí 11 (sách mới) | Sách bài tập Vật Lí 11
- Lý thuyết Vật Lí 11 (sách mới) | Kiến thức trọng tâm Vật Lí 11
- Các dạng bài tập Vật Lí lớp 11
- Giáo án Vật lí lớp 11 mới nhất
- Giải sgk Sinh học 11 | Giải bài tập Sinh học 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Sinh học 11 (sách mới) | Kiến thức trọng tâm Sinh 11
- Giải sgk Giáo dục công dân 11
- Lý thuyết Giáo dục công dân 11
- Lý thuyết Địa Lí 11 (sách mới) | Kiến thức trọng tâm Địa lí 11
- Giải Tập bản đồ Địa Lí 11
- Giải sgk Giáo dục quốc phòng - an ninh 11