Giải Toán 7 Bài 6 (Cánh diều): Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc
Với giải bài tập Toán lớp 7 Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 7 Bài 6.
Giải bài tập Toán 7 Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc
A. Câu hỏi trong bài
Câu hỏi khởi động trang 88 Toán 7 Tập 2: Có ba trạm quan sát A, B, C trong đó trạm quan sát C ở giữa hồ.
- Đo góc BAC được 60°, đo góc ABC được 45°;
- Kẻ tia Ax sao cho , kẻ tia By sao cho , xác định giao điểm D của hai tia đó;
- Đo khoảng cách AD và BD. Ta có AC = AD và BC = BD.
Tại sao lại có hai đẳng thức trên?
Lời giải:
Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:
Bài toán được mô tả bởi hai tam giác ABC và tam giác ABD như Hình 55.
GT |
ABC, ABD,
|
KL |
AC = AD và BC = BD. |
Chứng minh (Hình 55):
Xét ABC và ABD có:
(giả thiết),
AB chung,
(giả thiết)
Suy ra ABC = ABD (g.c.g)
Do đó AC = AD và BC = BD (các cặp cạnh tương ứng).
Vậy AC = AD và BC = BD.
Hoạt động 1 trang 88 Toán 7 Tập 2:
Những góc nào của tam giác ABC có cạnh thuộc đường thẳng AB?
Lời giải:
Ta có gồm hai cạnh lần lượt thuộc hai đường thẳng AB và AC;
gồm hai cạnh lần lượt thuộc hai đường thẳng AB và BC.
Vậy, những góc của tam giác ABC có cạnh thuộc đường thẳng AB là: và
Hoạt động 2 trang 88 Toán 7 Tập 2: Cho hai tam giác ABC và A'B'C' (Hình 57) có: AB = A'B' = 3 cm, .
Lời giải:
Dựa vào hình trên, bằng cách đếm số ô vuông, ta thấy:
+) Cạnh BC là đường chéo của hình vuông có độ dài cạnh bằng 4 độ dài cạnh ô vuông;
+) Cạnh B'C' là đường chéo của hình vuông có độ dài cạnh bằng 4 độ dài cạnh ô vuông;
Do đó BC = B'C'.
Xét ABC và A'B'C' có:
AB = A'B' (= 3cm).
.
BC = B'C' (chứng minh trên).
Suy ra ABC = A'B'C' (c.g.c)
Vậy ABC = A'B'C'.
Luyện tập 1 trang 89 Toán 7 Tập 2: Cho hai tam giác ABC và A'B'C' thỏa mãn: BC = B'C' = 3 cm, , , . Hai tam giác ABC và A'B'C' có bằng nhau không? Vì sao?
Lời giải:
Xét tam giác A'B'C' có: (tổng ba góc trong một tam giác)
Suy ra: .
Xét ABC và A'B'C' có:
.
BC = B'C' (theo giả thiết).
.
Suy ra ABC = A'B'C' (g.c.g)
Vậy ABC = A'B'C'.
Luyện tập 2 trang 89 Toán 7 Tập 2: Giải thích bài toán ở phần mở đầu.
Lời giải:
Bài toán được mô tả bởi hai tam giác ABC và tam giác ABD như Hình 55.
GT |
ABC, ABD,
|
KL |
AC = AD và BC = BD. |
Chứng minh (Hình 55):
Xét ABC và ABD có:
(giả thiết),
AB chung,
(giả thiết)
Suy ra ABC = ABD (g.c.g)
Do đó AC = AD và BC = BD (các cặp cạnh tương ứng).
Vậy AC = AD và BC = BD.
B. Bài tập
Bài 1 trang 91 Toán 7 Tập 2: Cho hai tam giác ABC và A'B'C' thỏa mãn: AB = A'B', , . Hai tam giác ABC và A'B'C' có bằng nhau không? Vì sao?
Lời giải:
GT |
ABC, A'B'C', AB = A'B', |
KL |
ABC và A'B'C' có bằng nhau không? Vì sao? |
Xét tam giác ABC có: (tổng ba góc trong một tam giác)
Suy ra: .
Xét tam giác A'B'C' có: (tổng ba góc trong một tam giác)
Suy ra: .
Mà , (giả thiết) nên .
Xét ABC và A'B'C' có:
(giả thiết),
AB = A’B’ (giả thiết),
(giả thiết).
Suy ra ABC = A'B'C' (g.c.g).
Vậy ABC = A'B'C'.
Bài 2 trang 91 Toán 7 Tập 2: Cho Hình 65 có AM = BN, .
Lời giải:
GT |
AMO, BNO, AM = BN, . |
KL |
OA = OB, OM = ON. |
Chứng minh (Hình 65):
Xét AMO có: (tổng ba góc trong một tam giác)
Suy ra: . (1)
Xét BNO có: (tổng ba góc trong một tam giác)
Suy ra: . (2)
Mà (theo giả thiết), (hai góc đối đỉnh) (3)
Từ (1), (2) và (3) ta có: .
Xét AMO và BNO có:
(giả thiết).
AM = BN (giả thiết).
(chứng minh trên).
Suy ra AMO và BNO (g.c.g).
Do đó OA = OB và OM = ON (các cặp cạnh tương ứng).
Cho Hình 66 có Chứng minh MN = QP, MP = QN.
Lời giải:
GT |
MNQ, MPQ,
|
KL |
MN = QP, MP = QN. |
Chứng minh (Hình 66):
Tam giác MNQ có (giả thiết) nên tam giác MNQ vuông tại N.
Tam giác QPM có (giả thiết) nên tam giác MPQ vuông tại P.
Xét MNQ (vuông tại N) và MPQ (vuông tại P) có:
(giả thiết).
MQ chung.
Suy ra MNQ = QPM (cạnh huyền - góc nhọn).
Do đó MN = QP và MP = QN (các cặp cạnh tương ứng).
Vậy MN = QP và MP = QN.
Bài 4 trang 92 Toán 7 Tập 2: Cho Hình 67 có DH = CK, Chứng minh AD = BC.
Lời giải:
GT |
AHD, BKC,
DH = CK, |
KL |
AD = BC. |
Chứng minh (Hình 67):
Xét tam giác AHD có: là góc ngoài tại đỉnh A của tam giác nên (tính chất góc ngoài của tam giác)
Hay .
Xét tam giác BKC có: là góc ngoài tại đỉnh B của tam giác nên (tính chất góc ngoài của tam giác)
Hay .
Mà (giả thiết) nên .
Tam giác AHD có nên là tam giác vuông tại H.
Tam giác BKC có nên là tam giác vuông tại K.
Xét AHD (vuông tại H) và BKC (vuông tại K) có:
DH = CK (giả thiết),
(chứng minh trên).
Suy ra AHD = BKC (cạnh góc vuông – góc nhọn kề)
Do đó AD = BC (hai cạnh tương ứng).
Vậy AD = BC.
Bài 5 trang 92 Toán 7 Tập 2: Cho tam giác ABC có Tia phân giác góc BAC cắt cạnh BC tại điểm D.
Lời giải:
GT |
ABC, AD là tia phân giác của b) Tia Dx nằm trong , (E là giao điểm của Dx và AC) |
KL |
a) . b) ABD = AED, AB < AC. |
Chứng minh (Hình vẽ dưới đây):
a) Xét tam giác ABD có: là góc ngoài tại đỉnh D của tam giác nên .
Xét tam giác ABD có: là góc ngoài tại đỉnh D của tam giác nên .
Mà AD là tia phân giác của (giả thiết) nên (tính chất tia phân giác của một góc)
Lại có (giả thiết) nên hay .
Vậy
b) Xét ABD và AED có:
(chứng minh trên),
AD chung,
(giả thiết).
Suy ra ABD = AED (g.c.g).
Vậy ABD = AED.
* Chứng minh AB < AC:
Cách 1:
Vì ABD = AED (chứng minh trên) nên AB = AE (hai cạnh tương ứng)
Mà AE < AC (do điểm E nằm trên cạnh AC)
Nên AB < AC.
Vậy AB < AC.
Cách 2: Xét tam giác ABC có (giả thiết)
Mà cạnh AB đối diện với góc C, cạnh AC đối diện với góc C
Do đó AC > AB.
Vậy AB < AC.
Bài 6 trang 92 Toán 7 Tập 2: Cho ABC = MNP. Tia phân giác của góc BAC và NMP lần lượt cắt các cạnh BC và NP tại D, Q. Chứng minh AD = MQ.
Lời giải:
GT |
ABC = MNP, AD là tia phân giác của MQ là tia phân giác của |
KL |
AD = MQ. |
Chứng minh (Hình vẽ dưới đây):
Vì ABC = MNP (giả thiết) nên:
+) và (các cặp góc tương ứng);
+) AB = MN (hai cạnh tương ứng).
Ta có:
+) AD là tia phân giác của (giả thiết) nên (tính chất tia phân giác của một góc)
+) MQ là tia phân giác của (giả thiết) nên (tính chất tia phân giác của một góc)
Mà (chứng minh trên) nên .
Xét ABD và MNQ có:
(chứng minh trên),
AB = MN (chứng minh trên),
(chứng minh trên).
Suy ra ABD = MNQ (g.c.g).
Do đó AD = MQ (hai cạnh tương ứng).
Vậy AD = MQ.
Lý thuyết Toán 7 Bài 6. Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc - Cánh diều
1. Trường hợp bằng nhau góc – cạnh – góc
– Tính chất: Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.
Nếu , AB = A’B’, thì DABC = DA’B’C’ (g.c.g).
Ví dụ: Cho tam giác ABC và DEF có AB = ED. Biết tính số đo góc F.
Hướng dẫn giải
Xét tam giác ABC và tam giác DEF có:
(giả thiết),
AB = ED (giả thiết),
(giả thiết),
Do đó DABC = DDEF (g.c.g).
Suy ra (hai góc tương ứng).
Mà (giả thiết), do đó
Vậy
Ví dụ: Cho hình vẽ sau:
Chứng minh DAOB = DCOD.
Hướng dẫn giải
Vì mà hai góc này ở vị trí so le trong.
Nên AB // CD (dấu hiệu nhận biết)
Suy ra (hai góc so le trong).
Xét DABO và DCDO có:
(chứng minh trên),
AB = CD (giả thiết),
(giả thiết),
Do đó DAOB = DCOD (g.c.g).
Vậy DAOB = DCOD.
2. Áp dụng vào trường hợp bằng nhau về cạnh góc vuông (hoặc cạnh huyền) và góc nhọn của tam giác vuông
2.1. Trường hợp bằng nhau về cạnh góc vuông và góc nhọn của tam giác vuông
– Nếu một cạnh góc vuông và góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Nếu , AB = A’B’, thì DABC = DA’B’C’ (cạnh góc vuông – góc nhọn kề).
Ví dụ: Cho tam giác ABC có tia phân giác AD của (D ∈ BC) và AD ⊥ BC. Chứng minh AB = AC.
Hướng dẫn giải
Xét ∆ABD và ∆ACD có:
(do AD ⊥ BC),
AD là cạnh chung,
(do AD là tia phân giác của ),
Do đó ∆ABD = ∆ACD (cạnh góc vuông – góc nhọn kề)
Suy ra AB = AC (hai cạnh tương ứng)
Vậy AB = AC.
2.2. Trường hợp bằng nhau về cạnh huyền và góc nhọn của tam giác vuông
– Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
Nếu , BC = B’C’, thì DABC = DA’B’C’ (cạnh huyền – góc nhọn).
Ví dụ: Cho góc xOy, Oz là tia phân giác của góc đó. Gọi I là một điểm trên tia Oz (I khác O). Kẻ IM vuông góc với Ox (M ∈ Ox), IN vuông góc với Oy (N ∈ Oy). Biết độ dài đoạn thẳng IM là 2 cm, tính độ dài đoạn thẳng IN?
Hướng dẫn giải
Xét DOIM và DOIN có:
(do Oz là tia phân giác của ),
OI là cạnh chung,
Do đó DOMI = DONI (cạnh huyền – góc nhọn)
Suy ra IM = IN (hai cạnh tương ứng)
Mà IM = 2 cm (giả thiết)
Nên IN = 2 cm.
Vậy độ dài đoạn thẳng IN là 2 cm.
– Nhận xét: Độ dài các đoạn thẳng IM, IN gọi là khoảng cách từ điểm I lần lượt đến hai cạnh Ox, Oy của góc xOy. Như vậy ta có thể nói: Nếu một điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó.
Ví dụ: Cho góc xOy nhọn. Gọi A là một điểm nằm trong góc xOy. Kẻ AB vuông góc với Ox (B ∈ Ox), AC vuông góc với Oy (C ∈ Oy). Biết AB = AC. Chứng minh rằng điểm A nằm trên tia phân giác của góc xOy.
Hướng dẫn giải
Xét DOAB và DOAC có:
AB = AC (giả thiết),
OA là cạnh chung.
Do đó DABO = DACO (cạnh huyền – cạnh góc vuông)
Suy ra (hai góc tương ứng).
Do đó OA là tia phân giác của
Nên A là điểm thuộc tia phân giác của góc xOy.
Vậy điểm A nằm trên tia phân giác của góc xOy.
– Nhận xét: Nếu một điểm nằm trong một góc và cách đều hai cạnh của góc thì nằm trên tia phân giác của góc đó.
3. Vẽ tam giác khi biết một cạnh và hai góc kề cạnh đó
Ví dụ: Để vẽ tam giác ABC có AB = 5 cm, bằng thước thẳng (có chia đơn vị) và thước đo góc, ta làm như sau:
– Bước 1: Vẽ đoạn thẳng AB = 5 cm
– Bước 2: Vẽ các tia Ax, By sao cho
– Bước 3: Vẽ C là điểm chung của hai tia Ax và By. Ta nhận được tam giác ABC.
Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 8: Đường vuông góc và đường xiên
Bài 9: Đường trung trực của một đoạn thẳng
Xem thêm các chương trình khác:
- Soạn văn lớp 7 (hay nhất)– Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Giải sbt Ngữ văn lớp 7 – Cánh Diều
- Văn mẫu lớp 7 – Cánh Diều
- Soạn văn lớp 7 (ngắn nhất) – Cánh Diều
- Giải VBT Ngữ văn lớp 7 – Cánh diều
- Giải sgk Tiếng Anh 7 - Explore English
- Giải sgk Tiếng Anh 7 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 7 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 7 i-learn Smart World
- Bài tập Tiếng Anh 7 iLearn Smart World theo Unit có đáp án
- Giải sbt Tiếng Anh 7 - ilearn Smart World
- Giải sgk Lịch sử 7 – Cánh Diều
- Lý thuyết Lịch Sử 7 – Cánh Diều
- Giải sbt Lịch sử 7 – Cánh Diều
- Giải VBT Lịch sử 7 – Cánh diều
- Giải sgk Khoa học tự nhiên 7 – Cánh Diều
- Lý thuyết Khoa học tự nhiên 7 – Cánh Diều
- Giải sbt Khoa học tự nhiên 7 – Cánh Diều
- Giải sgk Địa lí 7 – Cánh Diều
- Lý thuyết Địa Lí 7 – Cánh Diều
- Giải sbt Địa lí 7 – Cánh Diều
- Giải VBT Địa lí 7 – Cánh diều
- Giải sgk Tin học 7 – Cánh Diều
- Lý thuyết Tin học 7 – Cánh Diều
- Giải sbt Tin học 7 – Cánh Diều
- Giải sgk Giáo dục công dân 7 – Cánh Diều
- Lý thuyết Giáo dục công dân 7 – Cánh Diều
- Giải sbt Giáo dục công dân 7 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 7 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 7 – Cánh Diều
- Giải sgk Công nghệ 7 – Cánh Diều
- Lý thuyết Công nghệ 7 – Cánh Diều
- Giải sbt Công nghệ 7 – Cánh Diều
- Giải sgk Giáo dục thể chất 7 – Cánh Diều
- Giải sgk Âm nhạc 7 – Cánh Diều