Giải Toán 7 Bài 3 (Cánh diều): Hai tam giác bằng nhau
Với giải bài tập Toán lớp 7 Bài 3: Hai tam giác bằng nhau sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 7 Bài 3.
Giải bài tập Toán 7 Bài 3: Hai tam giác bằng nhau
A. Câu hỏi trong bài
Câu hỏi khởi động trang 78 Toán 7 Tập 2: Một dây chuyền sản xuất ra các sản phẩm có dạng hình tam giác giống hệt nhau (Hình 27). Khi đóng gói hàng, người ta xếp chúng chồng khít lên nhau.
Lời giải
Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:
Khi hai tam giác có thể chồng khít lên nhau tức là hai tam giác bằng nhau.
Giả sử hai tam giác đó là ∆ABC và ∆A'B'C'.
Ta có: ∆ABC = ∆A'B'C'
Suy ra:
+) AB = A'B'; BC = B'C'; CA = C'A';
+)
Vậy khi hai tam giác có thể chồng khít lên nhau thì các cạnh và các góc tương ứng của hai tam giác bằng nhau.
Hoạt động 1 trang 78 Toán 7 Tập 2: Dùng kéo cắt tờ giấy thứ nhất thành hình tam giác ABC. Đặt hình tam giác ABC lên tờ giấy thứ hai, vẽ theo các cạnh của hình tam giác ABC trên tờ giấy thứ hai rồi cắt thành hình tam giác A'B'C' (Hình 28).
Sau khi đặt tam giác ABC chồng khít lên tam giác A'B'C', hãy so sánh:
a) Các cạnh tương ứng: AB và A'B'; BC và B'C'; CA và C'A';
b) Các góc tương ứng: và ; và , và
Lời giải
Sau khi đặt tam giác ABC chồng khít lên tam giác A'B'C' ta thấy:
a) AB = A'B'; BC = B'C'; CA = C'A';
b)
Hoạt động 1 trang 79 Toán 7 Tập 2: Quan sát hai tam giác ABC và A'B'C' trên một tờ giấy kẻ ô vuông (Hình 30).
– Các cặp cạnh: AB và A'B'; BC và B'C'; CA và C'A'.
b) Hai tam giác ABC và A'B'C' có bằng nhau hay không?
Lời giải
Ta coi cạnh của hình ô vuông nhỏ là 1 đơn vị.
Khi đó cạnh AB là đường chéo của hình vuông có cạnh bằng 3 đơn vị;
Tương tự:
+ Cạnh A'B' là đường chéo của hình vuông có cạnh bằng 3 đơn vị;
+ Cạnh AC là đường chéo của hình vuông có cạnh bằng 3 đơn vị;
+ Cạnh A'C' là đường chéo của hình vuông có cạnh bằng 3 đơn vị;
+ Cạnh BC có độ dài bằng 6 đơn vị;
+ Cạnh B'C' có độ dài bànge 6 đơn vị.
a) Do đó ta có: AB = A'B'; BC = B'C'; CA = C'A';
Sử dụng thước đo góc ta đo được
b) Xét tam giác ABC và tam giác A'B'C' ta có:
+) AB = A'B'; BC = B'C'; CA = C'A';
+)
Do đó ∆ABC = ∆A'B'C'.
c) Ta có thể đặt mảnh giấy hình tam giác ABC chồng khít lên mảnh giấy hình tam giác A'B'C'.
Luyện tập trang 79 Toán 7 Tập 2: Cho biết ∆ABC = ∆MNP, AC = 4 cm, Tính độ dài cạnh MP và số đo góc ACB.
Lời giải
GT |
∆ABC = ∆MNP, AC = 4 cm, |
KL |
Tính MP và |
Vì ∆ABC = ∆MNP (giả thiết) nên ta có:
+) AC = MP (hai cạnh tương ứng) mà AC = 4 cm nên MP = 4 cm;
+) (hai góc tương ứng) mà nên
Vậy MP = 4 cm và
B. Bài tập
Cho biết ∆ABC = ∆DEG, AB = 3 cm, BC = 4 cm, CA = 6 cm. Tìm độ dài các cạnh của tam giác DEG.
Lời giải
GT |
∆ABC = ∆DEG AB = 3 cm, BC = 4 cm, CA = 6 cm |
KL |
Tính DE, EF, DF |
Chứng minh (Hình vẽ dưới đây):
Vì ∆ABC = ∆DEG (giả thiết) nên ta có:
AB = DE; BC = EG; CA = GD (các cặp cạnh tương ứng)
Mà AB = 3 cm, BC = 4 cm, CA = 6 cm
Nên DE = 3 cm, EG = 4 cm, GD = 6 cm.
Vậy độ dài ba cạnh của tam giác DEG là: DE = 3 cm, EG = 4 cm, GD = 6 cm.
Cho biết ∆PQR = ∆IHK, Tính số đo góc K của tam giác IHK.
Lời giải
GT |
∆PQR = ∆IHK,
|
KL |
Tính |
Chứng minh (Hình vẽ dưới đây):
Xét tam giác PQR có: (tổng ba góc trong một tam giác)
Suy ra
Mà (giả thiết)
Do đó
Vì ∆PQR = ∆IHK (giả thiết) nên ta có: (hai góc tương ứng)
Mà
Do đó
Vậy số đo góc K của tam giác IHK bằng 60°.
Cho ∆ABC = ∆MNP và Tính số đo góc P.
Lời giải
GT |
∆ABC = ∆MNP,
|
KL |
Tính |
Chứng minh (Hình vẽ dưới đây)
Vì ∆ABC = ∆MNP (giả thiết) nên ta có: (các cặp góc tương ứng)
Mà (giả thiết)
Suy ra
Xét tam giác MNP có: (tổng ba góc trong một tam giác)
Suy ra
Hay
Vậy số đo góc P của tam giác MNP bằng 55°.
Bài 4 trang 79 Toán 7 Tập 2: Cho tam giác ABC và điểm M thuộc cạnh BC thoả mãn ∆AMB = ∆AMC (Hình 32).
a) M là trung điểm của đoạn thẳng BC;
b) Tia AM là tia phân giác của góc BAC và
Lời giải
GT |
DABC, M ∈ BC ∆AMB = ∆AMC. |
KL |
a) M là trung điểm của BC; b) Tia AM là tia phân giác của góc BAC và |
Chứng minh (Hình 32):
a) Vì ∆AMB = ∆AMC (giả thiết) nên ta có: MB = MC (hai cạnh tương ứng)
Suy ra M là trung điểm của BC.
b) Vì ∆AMB = ∆AMC (giả thiết) nên ta có:
+) (hai góc tương ứng) do đó tia AM là tia phân giác của góc BAC;
+) (hai góc tương ứng)
Lại có và là hai góc kề bù nên: (tính chất hai góc kề bù)
Suy ra
Hay
Do đó
Suy ra
Vậy tia AM là tia phân giác của góc BAC và
Lý thuyết Toán 7 Bài 3. Hai tam giác bằng nhau - Cánh diều
– Định nghĩa: Hai tam giác bằng nhau là hai tam giác có các cạnh tương ứng bằng nhau và các góc tương ứng bằng nhau.
Ví dụ: Cho hai tam giác ABC và A’B’C’ như hình vẽ dưới đây:
Hai tam giác này có bằng nhau không? Vì sao?
Hướng dẫn giải
Xét tam giác ABC và tam giác A'B'C' có:
+) AB = A'B', AC = A'C', BC = B'C';
+)
Do đó hai tam giác ABC và A’B’C’ là hai tam giác bằng nhau.
– Khi tam giác ABC và tam giác A'B'C' bằng nhau thì ta kí hiệu là: DABC = DA'B'C'.
– Quy ước: Khi viết hai tam giác bằng nhau, tên đỉnh của hai tam giác đó phải viết theo đúng thứ tự tương ứng với sự bằng nhau.
- Chú ý:
+ Nếu AB = A'B', AC = A'C', BC = B'C' và thì DABC = DA'B'C'.
+ Nếu DABC = DA'B'C' thì AB = A'B', AC = A'C', BC = B'C' và
Ở đây:
• Hai góc A và A' (B và B', C và C') là hai góc tương ứng;
• Hai cạnh AB và A'B' (BC và B'C', AC và A'C') là hai cạnh tương ứng.
Ví dụ: Cho hai tam giác ABC và DEF như hình vẽ dưới đây:
Hai tam giác ABC và DEF có bằng nhau không? Nếu bằng nhau hãy viết kí hiệu bằng nhau của hai tam giác đó.
Hướng dẫn giải
Xét tam giác FDE có (định lí tổng ba góc trong một tam giác)
Suy ra
Hay
Xét tam giác BCA ta cũng có: (định lí tổng ba góc trong một tam giác)
Suy ra
Hay
Xét tam giác FDE và tam giác BCA có:
+) AB = DE, AC = DF, BC = EF
+)
Do đó DABC = DDEF.
Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:
Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh
Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh
Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc
Xem thêm các chương trình khác:
- Soạn văn lớp 7 (hay nhất)– Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Cánh Diều
- Giải sbt Ngữ văn lớp 7 – Cánh Diều
- Văn mẫu lớp 7 – Cánh Diều
- Soạn văn lớp 7 (ngắn nhất) – Cánh Diều
- Giải VBT Ngữ văn lớp 7 – Cánh diều
- Giải sgk Tiếng Anh 7 - Explore English
- Giải sgk Tiếng Anh 7 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 7 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 7 i-learn Smart World
- Bài tập Tiếng Anh 7 iLearn Smart World theo Unit có đáp án
- Giải sbt Tiếng Anh 7 - ilearn Smart World
- Giải sgk Lịch sử 7 – Cánh Diều
- Lý thuyết Lịch Sử 7 – Cánh Diều
- Giải sbt Lịch sử 7 – Cánh Diều
- Giải VBT Lịch sử 7 – Cánh diều
- Giải sgk Khoa học tự nhiên 7 – Cánh Diều
- Lý thuyết Khoa học tự nhiên 7 – Cánh Diều
- Giải sbt Khoa học tự nhiên 7 – Cánh Diều
- Giải sgk Địa lí 7 – Cánh Diều
- Lý thuyết Địa Lí 7 – Cánh Diều
- Giải sbt Địa lí 7 – Cánh Diều
- Giải VBT Địa lí 7 – Cánh diều
- Giải sgk Tin học 7 – Cánh Diều
- Lý thuyết Tin học 7 – Cánh Diều
- Giải sbt Tin học 7 – Cánh Diều
- Giải sgk Giáo dục công dân 7 – Cánh Diều
- Lý thuyết Giáo dục công dân 7 – Cánh Diều
- Giải sbt Giáo dục công dân 7 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 7 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 7 – Cánh Diều
- Giải sgk Công nghệ 7 – Cánh Diều
- Lý thuyết Công nghệ 7 – Cánh Diều
- Giải sbt Công nghệ 7 – Cánh Diều
- Giải sgk Giáo dục thể chất 7 – Cánh Diều
- Giải sgk Âm nhạc 7 – Cánh Diều