Bài 2 trang 84 Toán 7 Tập 2 | Chân trời sáng tạo Giải Toán lớp 7

Lời giải Bài 2 trang 84 Toán 7 Tập 2 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

1 1,323 28/02/2023


Giải Toán 7 Chân trời sáng tạo Bài tập cuối chương 8 

Bài 2 trang 84 Toán 7 Tập 2:

Cho tam giác ABC vuông tại A, vẽ đường cao AH. Trên tia đối của tia HA lấy điểm M sao cho H là trung điểm của AM.

a) Chứng minh rằng tam giác ABM cân.

b) Chứng minh rằng ∆ABC = ∆MBC.

Lời giải:

GT

ABC vuông tại A, đường cao AH,

M thuộc tia đối của tia HA,

H là trung điểm của AM.

KL

a) ∆ABM cân.

b) ∆ABC = ∆MBC.

Giải Toán 7  (Chân trời sáng tạo): Bài tập cuối chương 8 (ảnh 1) 

a) Ta có AH  BC tại H (giả thiết) do đó BC  AM tại H

Mà H là trung điểm của AM (giả thiết)

Suy ra BC là đường trung trực của AM.

Suy ra BA = BM (tính chất đường trung trực)

Do đó tam giác ABM cân tại B.

Vậy tam giác ABM cân tại B.

b) Vì BC là đường trung trực của đoạn thẳng AM (chứng minh câu a)

Nên CA = CM (tính chất đường trung trực)

Xét ∆ABC và ∆MBC có:

BA = BM (chứng minh câu a),

CA = CM (chứng minh trên)

BC là cạnh chung.

Do đó ∆ABC = ∆MBC (c.c.c)

Vậy ∆ABC = ∆MBC.

1 1,323 28/02/2023


Xem thêm các chương trình khác: