Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp (mới 2024 + Bài Tập) - Toán 9

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp lớp 9 gồm lý thuyết chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm Toán 9 Bài 8: Phương trình bậc nhất hai ẩn.

1 2,184 21/12/2023
Tải về


Lý thuyết Toán 9 Bài 8: Đường tròn ngoại tiếp. Đường tròn nội tiếp

Bài giảng Toán 9 Bài 8: Đường tròn ngoại tiếp. Đường tròn nội tiếp

A. Lý thuyết

1. Định nghĩa

- Đường tròn đi qua tất cả các đỉnh của một đa giác được gọi là đường tròn ngoại tiếp đa giác và đa giác được gọi là đa giác nội tiếp đường tròn.

Ví dụ 1. Đường tròn (O) đi qua tất cả các đỉnh của tứ giác ABCD như hình vẽ.

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp chi tiết – Toán lớp 9 (ảnh 1)

Do đó ta gọi đường tròn (O) ngoại tiếp tứ giác ABCD hay tứ giác ABCD nội tiếp đường tròn.

- Đường tròn tiếp xúc với tất cả các cạnh của một đa giác được gọi là đường tròn nội tiếp đa giác và đa giác được gọi là đa giác ngoại tiếp đường tròn.

Ví dụ 2. Đường tròn (I) tiếp xúc với tất cả các cạnh của tứ giác MNPQ như hình vẽ.

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp chi tiết – Toán lớp 9 (ảnh 1)

Do đó ta gọi đường tròn (I) nội tiếp tứ giác MNPQ hay tứ giác MNPQ ngoại tiếp đường tròn.

2. Định lí

- Bất kì đa giác đều nào cũng có một và chỉ một đường tròn ngoại tiếp, có một và chỉ một đường tròn nội tiếp.

- Trong tam giác đều, tâm của đường tròn ngoại tiếp trùng với tâm của đường tròn nội tiếp và được gọi là tâm của đa giác đều.

Ví dụ 3. Tam giác ABC đều có tâm đường tròn nội tiếp trùng với tâm đường tròn ngoại tiếp là tâm O và O được gọi là tâm của tam giác đều ABC.

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp chi tiết – Toán lớp 9 (ảnh 1)

Trong tam giác đều, đường cao đồng thời là đường trung tuyến, đường phân giác, đường phân giác.

Do đó, tâm này là giao điểm hai đường trung tuyến hoặc trung trực của hai cạnh hoặc là hai đường phân giác của hai góc hoặc là đường cao xuất phát từ hai đỉnh của tam giác đều.

3. Mở rộng

- Bán kính đường tròn ngoại tiếp đa giác là khoảng cách từ tâm đến đỉnh.

- Bán kính đường tròn nội tiếp đa giác là khoảng cách từ tâm O đến một cạnh.

Cho n-giác đều cạnh a. Khi đó:

- Chu vi của đa giác: 2p = na (p là nửa chu vi).

- Mỗi góc ở đỉnh của đa giác có số đo bằng (n2)  .  180on.

- Mỗi góc ở tâm của đa giác có số đo bằng 360on.

- Bán kính đường tròn ngoại tiếp: R=a2sin180ona=2R  .  sin180on

- Bán kính đường tròn nội tiếp:

r=a2tan180ona=2r  .  tan180on

- Liên hệ giữa bán kính đường tròn ngoại tiếp và nội tiếp: R2r2=a24.

- Diện tích đa giác đều: S=12nar.

Ví dụ 4.

a) Một hình vuông nội tiếp đường tròn (O; R). Tính mỗi cạnh của hình vuông theo R.

b) Một lục giác đều ngoại tiếp đường tròn (O; r). Tính mỗi cạnh của lục giác theo r.

Lời giải:

a) Cạnh của hình vuông là:

a=2R  .  sin180on=2R  .  sin140o=2R  .  22=R2

Vậy hình vuông nội tiếp (O; R) có độ dài mỗi cạnh là R2.

b) Cạnh của lục giác đều là:

a=2r  .  tan180on=2r  .  tan30o=2r  .  33=233r

Vậy lục giác đều ngoại tiếp (O; r) có độ dài mỗi cạnh là 233r.

B. Bài tập tự luyện

Bài 1. Một đa giác đều nội tiếp đường tròn (O; R). Biết độ dài mỗi cạnh của nó là R2. Hỏi đa giác đó là hình gì?

Lời giải:

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp chi tiết – Toán lớp 9 (ảnh 1)

Bài 2. Cho ∆ABC cân tại A có BAC^=120o; BC = 6 cm. Tính bán kính đường tròn ngoại tiếp ∆ABC.

Lời giải:

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp chi tiết – Toán lớp 9 (ảnh 1)

Xét ∆ABO và ∆ACO có:

AB = AC (vì ∆ABC cân tại A);

OB = OC (vì đều là bán kính đường tròn ngoại tiếp ∆ABC);

Cạnh OA chung.

Do đó ∆ABO = ∆ACO (c.c.c)

Suy ra BAO^=CAO^BAO^+CAO^=BAC^=120o.

Nên BAO^=CAO^=60o.

Mà ∆ACO cân tại O (vì OA = OC) nên ∆ACO đều.

Gọi AO cắt BC tại H ta có BH = CH = 3 cm.

∆ACO đều có AOCH nên HA = HO.

Áp dụng định lý Py – ta – go vào ∆CHO vuông tại H (AOCH) có:

CH2 + OH2 = OC2.

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp chi tiết – Toán lớp 9 (ảnh 1)

Vậy bán kính đường tròn ngoại tiếp ∆ABC là 23 cm.

Bài 3. Cho tam giác ABC vuông tại A có AB = 3 cm, AC = 4 cm. Gọi R là bán kính đường tròn ngoại tiếp; r là bán kính đường tròn nội tiếp tam giác ABC. Tính tỉ số rR.

Lời giải:

Áp dụng định lý Py – ta – go vào ∆ABC vuông tại A, ta có:

BC2 = AB2 + AC2 = 32 + 42 = 25.

BC = 5 (cm).

Do đó bán kính đường tròn ngoại tiếp ∆ABC là:

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp chi tiết – Toán lớp 9 (ảnh 1)

Lý thuyết Đường tròn ngoại tiếp. Đường tròn nội tiếp chi tiết – Toán lớp 9 (ảnh 1)

Xem thêm các bài tổng hợp lý thuyết Toán lớp 9 đầy đủ, chi tiết khác:

Lý thuyết Cung chứa góc

Lý thuyết Tứ giác nội tiếp

Lý thuyết Độ dài đường tròn, cung tròn

Lý thuyết Diện tích hình tròn, hình quạt tròn

Lý thuyết Ôn tập chương 3

1 2,184 21/12/2023
Tải về


Xem thêm các chương trình khác: