Lý thuyết Các khái niệm về hàm số (mới 2024 + Bài Tập) – Toán 9
Lý thuyết Các khái niệm về hàm số lớp 9 gồm lý thuyết chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm Toán 9 Bài 1: Các khái niệm về hàm số.
Lý thuyết Toán 9 Bài 1: Các khái niệm về hàm số
A. Lý thuyết
1. Khái niệm hàm số
• Nếu đại lượng y phụ thuộc vào một đại lượng x thay đổi sao cho mỗi giá trị của x, ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và x gọi là biến số
• Hàm số có thể được cho bằng bảng hoặc bằng công thức, ...
Ví dụ 1.
+) y là hàm số của x được cho dưới dạng bảng:
x |
− 1 |
0 |
1 |
2 |
y |
3 |
0 |
− 3 |
− 6 |
+) y là hàm số của x được cho dưới dạng công thức: ; y = x + 2; y = 5x.
• Hàm số thường được ký hiệu bởi những chữ f, g, h, ... chẳng hạn khi y là hàm số của biến số x, ta viết y = f(x) hoặc y = g(x), ….
• f(a) là giá trị của hàm số y = f(x) tại x = a. Khi hàm số y được cho bởi công thức y = f(x), muốn tính giá trị f(a) của hàm số tại x = a, ta thay x = a vào biểu thức f(x) rồi thực hiện các phép tính trong biểu thức.
Ví dụ 2. Ta có hàm số y = f(x) = 2x + 1.
Khi đó, f(2) = 2 . 2 + 1 = 5.
• Khi x thay đổi mà y luôn nhận một giá trị không đổi thì y được gọi là một hàm hằng.
Ví dụ 3. Ta có y = f(x) = 3.
Khi đó với giá trị nào của x thì y = 3.
Vậy y là hàm hằng.
2. Đồ thị của hàm số
Tập hợp các điểm biểu diễn các cặp giá trị tương ứng (x; f(x)) trên mặt phẳng tọa độ được gọi là đồ thị của hàm số y = f(x).
Ví dụ 4. Cho đồ thị của hàm số y = f(x) = 2x.
Các cặp giá trị tương ứng trên mặt phẳng tọa độ là O(0; 0); A(1; 2).
3. Hàm số đồng biến, nghịch biến
Cho hàm số y = f(x) xác định với mọi giá trị của x thuộc .
• Nếu giá trị của biến x tăng lên mà giá trị của f(x) tương ứng cũng tăng lên thì hàm số y = f(x) được gọi là hàm số đồng biến trên (gọi tắt là hàm số đồng biến).
• Nếu giá trị của biến x tăng lên mà giá trị của f(x) tương ứng giảm đi thì hàm số y = f(x) được gọi là hàm số nghịch biến trên R (gọi tắt là hàm số nghịch biến).
Nói cách khác, cho hàm số y = f(x) xác định trên tập số thực R. Với ta có:
+ Nếu x1 < x2 mà f(x1) < f(x2) thì hàm số đồng biến.
+ Nếu x1 < x2 mà f(x1) > f(x2) thì hàm số nghịch biến.
Ví dụ 5. Cho hàm số y = x – 5, xác định với .
Ta có: x1 < x2 x1 – 5 < x2 – 5.
Hay f(x1) < f(x2) nên hàm số y = x – 5 đồng biến trên .
B. Bài tập tự luyện
Bài 1: Tìm số a, biết đồ thị hàm số y = 2x2 – ax – 1 đi qua điểm M(2; 3).
Lời giải:
Vì đồ thị hàm số y = 2x2 – ax – 1 đi qua điểm M(2; 3) nên:
2 . 22 – a . 2 – 1 = 3
8 – 2a – 1 = 3
7 – 2a = 3
2a = 4
a = 2.
Vậy với a = 2 thì đồ thị hàm số đi qua M(2; 3).
Bài 2: Cho hàm số f(x) = x3 – 3x + 5. Hãy tính f(−1); ; .
Lời giải:
Ta có: f(−1) = (−1)3 – 3. (−1) + 5 = −1 + 3 + 5 = 7;
Vậy f(−1) = 7; ; .
Bài 3: Cho hàm số f(x) = 4x2 – 5x + 2. Các điểm A(0; 2), B(−1; 4), C(1; 1) có thuộc đồ thị hàm số không? Tại sao?
Lời giải:
Vì f(0) = 4 . 0 – 5 . 0 + 2 = 2 nên điểm A(0 ; 2) thuộc đồ thị hàm số đã cho.
Vì f(−1) = 4 . 1 + 5 . 1 + 2 = 11 nên điểm B(−1 ; 4) không thuộc đồ thị hàm số đã cho.
Vì f(1) = 4 . 1 – 5 . 1 + 2 nên điểm C(1; 1) thuộc đồ thị hàm số đã cho.
Vậy điểm A(0; 2), C(1; 1) thuộc đồ thị hàm số và điểm B(−1; 4) không thuộc đồ thị hàm số đã cho.
Trắc nghiệm Toán 9 Bài 1: Nhắc lại và bổ sung các khái nhiệm của hàm số
Câu 1: Cho hàm số y = f(x) xác định trên D. Với x1, x2D; x1 < x2, khẳng định nào sau đây là đúng?
A. f(x1) < f(x2) thì hàm số đồng biến trên D
B. f(x1) < f(x2) thì hàm số nghịch biến trên D
C. f(x1) > f(x2) thì hàm số đồng biến trên D
D. f(x1) = f(x2) thì hàm số đồng biến trên D
Đáp án: A
Giải thích:
Cho hàm số y = f(x) xác định trên tập D. Khi đó:
- Hàm số đồng biến trên D
x1; x2 D; x1 < x2
f(x1) < f(x2).
- Hàm số nghịch biến trên D
x1; x2 D; x1 < x2
f(x1) > f(x2).
Câu 2: Cho hàm số y = (3 + 2)x − − 1. Tìm x để y = 0.
A. x = 1
B. x = + 1
C. x =
D. x = − 1
Đáp án: D
Giải thích:
Câu 3: Cho hàm số f(x) x có đồ thị (C) và các điểm M (0; 4); P (4; −1); Q (−4; 1); A (8; −2); O (0; 0). Có bao nhiêu điểm trong số các điểm trên thuộc đồ thị hàm số (C).
A. 4
B. 3
C. 2
D. 1
Đáp án: A
Giải thích:
Câu 4: Hàm số y = 5x – 16 là hàm số?
A. Đồng biến
B. Hàm hằng
C. Nghịch biến
D. Nghịch biến với x > 0
Đáp án: A
Giải thích:
TXĐ: D =
Câu 5: Cho hàm số y = f(x) xác định trên D. Với x1, x2 D; x1 > x2, khẳng định nào sau đây là đúng?
A. f(x1) < f(x2) thì hàm số đồng biến trên D
B. f(x1) > f(x2) thì hàm số nghịch biến trên D
C. f(x1) > f(x2) thì hàm số đồng biến trên D
D. f(x1) = f(x2) thì hàm số đồng biến trên D
Đáp án: C
Giải thích:
Câu 6: Cho hàm số f(x). Tính f(a2) với a < 0.
Đáp án: D
Giải thích:
Câu 7: Cho hàm số f(x) = x3 + x. Tính f(2).
A. 4
B. 6
C. 8
D. 10
Đáp án: D
Giải thích:
Thay x = 2 vào hàm số ta được:
f(2) = 23 + 2 = 10
Đáp án cần chọn là: D
Câu 8: Cho hàm số y = x – 4 − 4. Tìm x để y = 3.
A. x = + 3
B. x =
C. x = + 2
D. x = − 2
Đáp án: C
Giải thích:
Câu 9: Cho hàm số f(x) = 3x2 + 2x + 1. Tính f(3) – 2f(2).
A. 34
B. 17
C. 20
D. 0
Đáp án: D
Giải thích:
Thay x = 3 vào hàm số ta được:
f(3) = 3.32 + 2.3 + 1 = 34
Thay x = 2 vào hàm số ta được:
f(2) = 3.22 + 2.2 + 1 = 17
Suy ra f(3) – 2f(2) = 34 −2.17 = 0
Câu 10: Cho hai hàm số f(x) = −2x3 và h(x) = 10 – 3x. So sánh f(−2) và h(−1)
A. f(−2) < h(−1)
B. f(−2) h(−1)
C. f(−2) = h(−1)
D. f(−2) > h(−1)
Đáp án: D
Giải thích:
Thay x = −2 vào hàm số f(x) = −2x3
ta được f(−2) = −2.(−2)3 = 16
Thay x = −1 vào hàm số h(x) = 10 – 3x
ta được h(−1) = 10 – 3 (−1) = 13
Nên f(−2) > h(−1)
Xem thêm các bài tổng hợp lý thuyết Toán lớp 9 đầy đủ, chi tiết khác:
Lý thuyết Đồ thị hàm số y = ax
Lý thuyết Đường thẳng song song và đường thẳng cắt nhau
Xem thêm các chương trình khác:
- Giải sgk Hóa học 9 (sách mới) | Giải bài tập Hóa 9
- Giải sbt Hóa học 9
- Giải vở bài tập Hóa học 9
- Lý thuyết Hóa học 9
- Các dạng bài tập Hóa học lớp 9
- Tóm tắt tác phẩm Ngữ văn 9 (sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 9 (hay nhất) | Để học tốt Ngữ văn 9 (sách mới)
- Soạn văn 9 (ngắn nhất)
- Văn mẫu 9 (sách mới) | Để học tốt Ngữ văn 9 Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Tác giả - tác phẩm Ngữ văn 9 (sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 9 (thí điểm)
- Giải sgk Tiếng Anh 9 (sách mới) | Để học tốt Tiếng Anh 9
- Giải sbt Tiếng Anh 9
- Giải sbt Tiếng Anh 9 (thí điểm)
- Giải sgk Sinh học 9 (sách mới) | Giải bài tập Sinh học 9
- Giải vở bài tập Sinh học 9
- Lý thuyết Sinh học 9
- Giải sbt Sinh học 9
- Giải sgk Vật Lí 9 (sách mới) | Giải bài tập Vật lí 9
- Giải sbt Vật Lí 9
- Lý thuyết Vật Lí 9
- Các dạng bài tập Vật lí lớp 9
- Giải vở bài tập Vật lí 9
- Giải sgk Địa Lí 9 (sách mới) | Giải bài tập Địa lí 9
- Lý thuyết Địa Lí 9
- Giải Tập bản đồ Địa Lí 9
- Giải sgk Tin học 9 (sách mới) | Giải bài tập Tin học 9
- Lý thuyết Tin học 9
- Lý thuyết Giáo dục công dân 9
- Giải vở bài tập Lịch sử 9
- Giải Tập bản đồ Lịch sử 9
- Lý thuyết Lịch sử 9
- Lý thuyết Công nghệ 9