Giải Toán 10 trang 58 Tập 2 Chân trời sáng tạo
Với giải bài tập Toán lớp 10 trang 58 Tập 2 trong Bài 2: Đường thẳng trong mặt phẳng tọa độ sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 58 Tập 2.
Giải Toán 10 trang 58 Tập 2
Bài tập 5 trang 58 Toán lớp 10 Tập 2: Cho đường thẳng d có phương trình tham số . Tìm giao điểm của d với hai trục tọa độ.
Lời giải:
Giao điểm A của d và trục Ox là nghiệm của hệ phương trình: ⇔ ⇒
⇒
Giao điểm B của d và trục Oy là nghiệm của hệ phương trình: ⇔
⇒
⇒ B(0; 11).
Vậy d cắt hai trục tọa độ tại các điểm và B(0; 11).
Bài tập 6 trang 57 Toán lớp 10 Tập 2: Tìm số đo góc xen giữa hai đường thẳng d1 và d2 trong các trường hợp sau:
a) d1: x − 2y + 3 = 0 và d2: 3x − y − 11 = 0;
b) d1: và d2: x + 5y – 5 = 0 ;
Lời giải:
a) d1: x − 2y + 3 = 0 có vectơ pháp tuyến =(1 ; −2) ; d2: 3x − y − 11 = 0 có vectơ pháp tuyến =(3; −1).
Khi đó cos(d1, d2) = = =
⇒ (d1, d2) = 45°.
Vậy số đo góc xen giữa hai đường thẳng d1 và d2 là 45°.
b) d1: có vectơ chỉ phương = (1; 5) nên vectơ pháp tuyến = (5; −1).
d2: x + 5y – 5 = 0 có vectơ pháp tuyến = (1; 5)
Ta có: . = 5. 1 + (−1). 5 = 0 ⇒ ⊥ ⇒ (d1, d2) = 90°.
Vậy số đo góc xen giữa hai đường thẳng d1 và d2 là 90°.
c) Hai đường thẳng d1 và d2 lần lượt có vectơ chỉ phương là = (2; 4) và = (1; 2).
Ta có: = 2 ⇒ và cùng phương.
⇒ d1 và d2 song song hoặc trùng nhau
⇒ (d1, d2) = 0°.
Vậy số đo góc xen giữa hai đường thẳng d1 và d2 là 0°.
Bài tập 7 trang 58 Toán lớp 10 Tập 2: Tính khoảng cách từ điểm M đến đường thẳng Δ trong các trường hợp sau:
a) M(1; 2) và Δ: 3x − 4y + 12 = 0;
d) M(0; 0) và Δ: 3x + 4y – 25 = 0.
Lời giải:
a) Ta có: d(M; Δ) = = .
Vậy khoảng cách từ điểm M đến đường thẳng Δ là .
b) Δ: đi qua điểm O(0; 0) có vectơ chỉ phương =(1; −1) nên nhận vectơ =(1; 1) làm vectơ pháp tuyến.
Khi đó, phương trình tổng quát của Δ đi qua điểm O(0; 0) và nhận = (1; 1) làm vectơ pháp tuyến là: x + y = 0
d(M; Δ) = =
Vậy khoảng cách từ điểm M đến đường thẳng Δ là .
c) Δ: đi qua điểm A(0; ) có vectơ chỉ phương = (1; 0) nên nhận vectơ = (0; 1) làm vectơ pháp tuyến.
Phương trình tổng quát của Δ đi qua điểm A(0; ) và nhận = (0; 1) làm vectơ pháp tuyến là: 0(x − 0) + (y + ) = 0 ⇔ y + = 0.
d(M; Δ) = =
Vậy khoảng cách từ điểm M đến đường thẳng Δ là .
d) Đường thẳng Δ: 3x + 4y – 25 = 0 nhận = (3 ; 4) làm vectơ pháp tuyến
Khi đó d(M; Δ) = = = 5.
Vậy khoảng cách từ điểm M đến đường thẳng Δ là 5.
Bài tập 8 trang 57 Toán lớp 10 Tập 2: Tính khoảng cách giữa hai đường thẳng:
Lời giải:
Δ: 3x + 4y – 10 = 0 có = (3; 4) là vectơ pháp tuyến.
Δ′: 6x + 8y – 1 = 0 có = (6; 8) là vectơ pháp tuyến.
Ta có: nên và cùng phương.
Suy ra Δ và Δ′ song song hoặc trùng nhau.
Lấy điểm M(2; 1) ∈ Δ, thay tọa độ điểm M vào Δ′ ta có:
6.2 + 8.1 – 1 = 0 ⇔ 19 = 0 (vô lý).
⇒ M ∉ Δ′.
Do đó Δ // Δ′.
Khi đó khoảng cách giữa hai đường thẳng Δ và Δ′ là khoảng cách từ điểm M đến Δ′.
⇒ d(Δ, Δ′) = d(M, Δ′) = = = 1,9.
Vậy khoảng cách giữa hai đường thẳng Δ và Δ′ là 1,9.
Bài tập 9 trang 58 Toán lớp 10 Tập 2: Trong mặt phẳng Oxy, cho điểm S(x; y) di động trên đường thẳng d: 12x − 5y + 16 = 0. Tính khoảng cách ngắn nhất từ điểm M(5; 10) đến điểm S.
Lời giải:
Đường thẳng d: 12x − 5y + 16 = 0 có vectơ pháp uyến là = (12; −5).
Khoảng cách ngắn nhất từ điểm M đến điểm S chính là khoảng cách từ điểm M đến đường thẳng d
Ta có: d(M; d) = = = 2.
Vậy khoảng cách ngắn nhất từ M đến S là 2.
Bài tập 10 trang 58 Toán lớp 10 Tập 2: Một người đang viết chương trình cho trò chơi bóng đá rô bốt. Gọi A(−1; 1), B(9; 6), C(5; −3) là ba vị trí trên màn hình.
a) Viết phương trình các đường thẳng AB, AC, BC.
b) Tính góc hợp bởi hai đường thẳng AB và AC.
c) Tính khoảng cách từ điểm A đến đường thẳng BC.
Lời giải:
a) Ta có: = (10; 5), = (6; −4), = (−4; −9).
Phương trình đường thẳng AB đi qua điểm A(−1; 1) và nhận làm vectơ chỉ phương nên nhận = (5; −10) là vectơ pháp tuyến là:
5(x + 1) − 10(y − 1) = 0 ⇔ 5x − 10y + 15 = 0 ⇔ x − 2y + 3 = 0.
Phương trình đường thẳng AC đi qua điểm A(−1; 1) và nhận làm vectơ chỉ phương nên nhận = (4; 6) là vectơ pháp tuyến là:
4(x + 1) + 6(y − 1) = 0 ⇔ 4x + 6y – 2 = 0 ⇔ 2x + 3y – 1 = 0.
Phương trình đường thẳng BC đi qua điểm B(9; 6) và nhận làm vectơ chỉ phương nên nhận = (9; −4) là vectơ pháp tuyến là:
9(x − 9) − 4(y − 6) = 0 ⇔ 9x − 4y – 57 = 0.
Vậy phương trình của các đường thẳng AB, AC, BC lần lượt là: 10x − 2y + 3 = 0; 2x + 3y – 1 = 0; 9x − 4y – 57 = 0.
b) Ta có: . = 10.6 + 5.(−4) = 40;
Vậy khoảng cách từ điểm A đến đường thẳng BC là .
Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Đường tròn trong mặt phẳng tọa độ
Bài 4: Ba đường conic trong mặt phẳng tọa độ
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Soạn văn lớp 10 (ngắn nhất) – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Giải sbt Ngữ văn lớp 10 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Văn mẫu lớp 10 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 10 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Giải sbt Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 10 Friends Global đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 Friends Global
- Giải sgk Vật lí 10 – Chân trời sáng tạo
- Giải sbt Vật lí 10 – Chân trời sáng tạo
- Lý thuyết Vật lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Vật lí 10 – Chân trời sáng tạo
- Giải sgk Hóa học 10 – Chân trời sáng tạo
- Lý thuyết Hóa học 10 – Chân trời sáng tạo
- Giải sbt Hóa học 10 – Chân trời sáng tạo
- Giải Chuyên đề Hóa học 10 – Chân trời sáng tạo
- Giải sgk Sinh học 10 – Chân trời sáng tạo
- Giải sbt Sinh học 10 – Chân trời sáng tạo
- Lý thuyết Sinh học 10 – Chân trời sáng tạo
- Giải Chuyên đề Sinh học 10 – Chân trời sáng tạo
- Giải sgk Lịch sử 10 – Chân trời sáng tạo
- Giải sbt Lịch sử 10 – Chân trời sáng tạo
- Giải Chuyên đề Lịch sử 10 – Chân trời sáng tạo
- Lý thuyết Lịch sử 10 – Chân trời sáng tạo
- Giải sgk Địa lí 10 – Chân trời sáng tạo
- Lý thuyết Địa Lí 10 - Chân trời sáng tạo
- Giải sbt Địa lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Địa lí 10 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải Chuyên đề Kinh tế và pháp luật 10 – Chân trời sáng tạo
- Lý thuyết KTPL 10 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 10 – Chân trời sáng tạo