Giải Toán 10 (Chân trời sáng tạo): Bài tập cuối chương 3

Với giải bài tập Toán lớp 10 Bài tập cuối chương 3 sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 Bài tập cuối chương 3.

1 1,849 26/09/2024
Tải về


Giải bài tập Toán 10 Bài tập cuối chương 3

Bài tập

Giải Toán 10 trang 59 Tập 1

Bài 1 trang 59 Toán lớp 10 Tập 1: Tìm tập xác định của các hàm số sau:

a) y = 4x2 – 1;

b) y=1x2+1;

c) y=2+1x.

Lời giải:

a)

Hàm số y = 4x2 – 1 là hàm số bậc hai, do đó nó có tập xác định là D=.

b)

Ta có: x2 ≥ 0 với mọi số thực x

x2 + 1 > 0 với mọi số thực x

x2 + 1 ≠ 0 với mọi số thực x

Do đó, hàm số y=1x2+1 có tập xác định là D=.

c)

Điều kiện xác định của hàm số là x ≠ 0.

Do đó, hàm số y=2+1x có tập xác định là D=\{0}.

Bài 2 trang 59 Toán lớp 10 Tập 1: Tìm điều kiện của m để mỗi hàm số sau đây là một hàm số bậc hai:

a) y = (1 – 3m)x2 + 3;

b) y = (4m – 1)(x – 7)2;

c) y = 2(x2 + 1) + 11 – m.

Lời giải:

a) Hàm số y = (1 – 3m)x2 + 3 là hàm số bậc hai khi và chỉ khi

1 – 3m ≠ 0

3m ≠ 1

m13

Vậy m13 thì hàm số đã cho là hàm số bậc hai.

b) Có:

y = (4m – 1)(x – 7)2 = (4m – 1)(x2 – 14x + 49) = (4m – 1)x2 – 14(4m – 1)x + 49(4m – 1)

Hàm số này là hàm số bậc hai khi và chỉ khi

4m – 1 ≠ 0

4m ≠ 1

m14

Vậy m14 thì hàm số đã cho là hàm số bậc hai.

c) Có:

y = 2(x2 + 1) + 11 – m = 2x2 + 2 + 11 – m = 2x2 + 13 – m

Hàm số này luôn là hàm số bậc hai với mọi giá trị của m.

Bài 3 trang 59 Toán lớp 10 Tập 1: Vẽ đồ thị các hàm số sau:

a) y = x2 – 4x + 3;

b) y = - x2 – 4x + 5;

c) y = x2 – 4x + 5;

d) y = -x2 – 2x – 1.

Lời giải:

a) Xét hàm số y = x2 – 4x + 3, ta có:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = x2 – 4x + 3 là một parabol (P):

– Có đỉnh S với hoành độ xS = 2, tung độ y = –1;

– Có trục đối xứng là đường thẳng x = 2 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

– Bề lõm quay lên trên vì a > 0;

– Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3);

– Ngoài ra, phương trình x2 – 4x + 3 = 0 có hai nghiệm phân biệt là x1 = 1, x2 = 3. Do đó, đồ thị còn đi qua hai điểm (1; 0), (3; 0).

Ta vẽ được đồ thị như hình dưới:

Giải Toán 10 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

b) Xét hàm số y = –x2 – 4x + 5, ta có:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = –x2 – 4x + 5 là một parabol (P):

– Có đỉnh S với hoành độ xS = –2, tung độ y = 9;

– Có trục đối xứng là đường thẳng x = –2 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

– Bề lõm quay xuống dưới vì a < 0;

– Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5);

– Ngoài ra, phương trình –x2 – 4x + 5 = 0 có hai nghiệm phân biệt là x1 = –5, x2 = 1. Do đó, đồ thị còn đi qua hai điểm (–5; 0), (1; 0).

Ta vẽ được đồ thị như hình dưới:

Giải Toán 10 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

c) Xét hàm số y = x2 – 4x + 5, ta có:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = x2 – 4x + 5 là một parabol (P):

– Có đỉnh S với hoành độ xS = 2, tung độ y = 1;

– Có trục đối xứng là đường thẳng x = 1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

– Bề lõm quay lên trên vì a > 0;

– Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5);

– Ngoài ra, đồ thị hàm số y = x2 – 4x + 5 còn đi qua điểm (4; 5).

Ta vẽ được đồ thị như hình dưới:

Giải Toán 10 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

d) Xét hàm số y = –x2 – 2x – 1, ta có:

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = f(x) = –x2 – 2x – 1 là một parabol (P):

– Có đỉnh S với hoành độ xS = –1, tung độ y = 0;

– Có trục đối xứng là đường thẳng x = –1 (đường thẳng này đi qua đỉnh S và song song với trục Oy);

– Bề lõm quay xuống dưới vì a < 0;

– Cắt trục tung tại điểm có tung độ bằng –1, tức là đồ thị đi qua điểm có tọa độ (0; –1);

– Ngoài ra, đồ thị hàm số y = –x2 – 2x – 1 còn đi qua hai điểm (–3; –4) và (1; –4).

Ta vẽ được đồ thị như hình dưới:

Giải Toán 10 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

Bài 4 trang 59 Toán lớp 10 Tập 1: Một vận động viên chạy xe đạp trong 1 giờ 30 phút đầu với vận tốc trung bình là 42km/h. Sau đó người này nghỉ tại chỗ 15 phút và tiếp tục đạp xe 2 giờ liền với vận tốc 30km/h.

a) Hãy biểu thị quãng đường s (tính bằng ki lô mét) mà người này đi được sau t phút bằng một hàm số.

b) Vẽ đồ thị biểu diễn hàm số s theo t.

Lời giải:

Đổi: 42 km/h = 0,7 km/phút, 30 km/h = 0,5 km/phút

a) Trong 1 giờ 30 phút = 90 phút đầu với vận tốc trung bình là 42 km/h nên ta có:

Với 0 t ≤ 90 thì s = f(t) = 0,7t

Sau đó, người này nghỉ tại chỗ 15 phút nên ta có:

Với 90 < t ≤ 105 thì s = f(t) = 0,7 . 90 = 63

Người đó tiếp tục đạp xe 2 giờ = 120 phút liền với vận tốc 30 km/h nên ta có:

Với 105 < t ≤ 225 thì s = f(t) = 63 + 0,5 . (t – 105) = 63 + 0,5t – 52,5 = 10,5 + 0,5t.

Vậy ta có hàm số như sau: f(t)=0,7t                        0t9063                            (90<t105)10,5+0,5t         (105<t225) .

b) Trong đoạn [0; 90], đồ thị hàm số là đường thẳng đi qua điểm (0; 0) và (90; 63).

Trong khoảng (90; 105], đồ thị hàm số là đường thẳng s = 63, song song với trục Ot.

Trong khoảng (105; 120], đồ thị hàm số là đường thẳng đi qua điểm (225; 123).

Ta có đồ thị như hình vẽ:

Giải Toán 10 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

Bài 5 trang 59 Toán lớp 10 Tập 1: Biết rằng hàm số y = 2x2 + mx + n giảm trên khoảng (-∞; 1), tăng trên khoảng (1; + ∞) và có tập giá trị là [9; +∞). Xác định giá trị của m và n.

Lời giải:

Xét hàm số y = 2x2 + mx + n là hàm số bậc hai.

Do hàm số y = 2x2 + mx + n giảm trên khoảng (–∞; 1), tăng trên khoảng (1; +∞) và có tập giá trị là [9; +∞) nên ta có bảng biến thiên:

Giải Toán 10 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

Trong đó, ta có đỉnh của Parabol là (1; 9)

m2.2=1–m = 4 m = –4.

Lại có: 2.12 – 4.1 + n = 9 2 – 4 + n = 9 n = 11.

Vậy m = –4, n = 11.

Bài 6 trang 59 Toán lớp 10 Tập 1: Nhảy bungee là một trò chơi mạo hiểm. Trong trò chơi này, người chơi đứng ở vị trí trên cao, thắt dây an toàn và nhảy xuống. Sợi dây này có tính đàn hồi và được tính toán chiều dài để nó kéo người chơi lại khi gần chạm đất (hoặc mặt nước). Chiếc cầu trong Hình 1 có bộ phận chống đỡ dạng parabol. Một người thực hiện một cú nhảy bungee từ giữa cầu xuống với dây an toàn. Người này cần trang bị sợi dây an toàn dài bao nhiêu mét? Biết rằng chiều dài của sợi dây đó bằng một phần ba khoảng cách từ vị trí bắt đầu nhảy đến mặt nước.

Nhảy bungee là một trò chơi mạo hiểm. Trong trò chơi này, người chơi đứng ở vị trí trên cao

Lời giải:

Giải Toán 10 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

Đặt hệ trục tọa độ Oxy như hình vẽ, gọi phương trình của parabol có dạng: y = ax2 + bx + c (a, b, c là các số thực, a ≠ 0).

Ta có: OB = CD : 2 – CB = (48 + 117) : 2 – 48 = 34,5 (m)

OC = CD : 2 = (48 + 117) : 2 = 82,5 (m)

Từ đó ta có điểm thuộc parabol là (34,5; 46,2)

a.34,52 + b.34,5 + c = 46,2

1190,25a + 34,5b + c = 46,2 (1)

Ngoài ra, parabol còn cắt trục hoành tại hai điểm (–82,5; 0) và (82,5; 0) nên ta có:

a.(–82,5)2 + b.(–82,5) + c = 0 6806,25a – 82,5b + c = 0 (2)

a.82,52 + b.82,5 + c = 0 6806,25a + 82,5b + c = 0 (3)

Từ (1), (2), (3) ta có hệ phương trình: 1190,25a+34,5b+c=46,26806,25a82,5b+c=06806,25a+82,5b+c=0a=779360b=0c=46585832

Xét đỉnh parabol có hoành độ x = 0 và tung độ y = 46585832.

Khoảng cách từ vị trí nhảy đến mặt nước là: 1 + 46585832 + 43 = 83193832 (m)

Vậy độ dài dây an toàn cần thiết là: 83193832: 3 ≈ 33,33 m.

Bài 7 trang 59 Toán lớp 10 Tập 1: Giả sử một máy bay cứu trợ đang bay theo phương ngang và bắt đầu thả hàng từ độ cao 80m, lúc đó máy bay đang bay với vận tốc 50m/s. Để thùng hàng hỗ trợ rơi trúng vị trí được chọn, máy bay cần thả hàng ở vị trí nào? Biết rằng nếu chọn gốc tọa độ là hình chiếu trên mặt đất của vị trí hàng cứu trợ bắt đầu được thả, thì tọa độ của hàng cứu trợ được cho bởi hệ sau:

x=v0ty=h12gt2

Trong đó, v0 là vận tốc ban đầu và h là độ cao tính từ khi hàng rời máy bay.

Lưu ý: Chuyển động này được xem là chuyển động ném ngang.

Giả sử một máy bay cứu trợ đang bay theo phương ngang và bắt đầu thả hàng từ độ cao 80m

Lời giải:

Theo đề bài, ta có biểu thức tọa độ của thùng hàng: x=50ty=8012gt2.Giải Toán 10 Bài tập cuối chương 3 - Chân trời sáng tạo (ảnh 1)

Đặt hệ trục tọa độ như hình vẽ. Khi thùng hàng rơi đúng vị trí, ta có:

y = 0 8012gt2=012gt2=80gt2=160t2=160gt=160g (do t là thời gian nên t > 0).

Lấy g 10 m/s2.

Khi đó, ta có: x=50.16010200 (m)

Vậy để thùng hàng cứu trợ rơi đúng vị trí được chọn, máy bay cần bắt đầu thả hàng từ vị trí cách vị trí được chọn khoảng 200 m.

Lý thuyết Toán 10 Bài tập cuối chương 3 - Chân trời sáng tạo

1. Hàm số. Tập xác định và tập giá trị của hàm số

- Giả sử x và y là hai đại lượng biến thiên và x nhận giá trị thuộc tập số D.

Nếu với mỗi giá trị x thuộc D, ta xác định được một và chỉ một giá trị tương ứng y thuộc tập hợp số thực ℝ thì ta có một hàm số.

Ta gọi x là biến số và y là hàm số của x.

Tập hợp D được gọi là tập xác định của hàm số.

Tập hợp T gồm tất cả các giá trị y (tương ứng với x thuộc D) gọi là tập giá trị của hàm số.

Chú ý:

+ Ta thường dùng kí hiệu f(x) để chỉ giá trị y tương ứng với x, nên hàm số còn được viết là y = f(x).

+ Khi một hàm số được cho bằng công thức mà không chỉ rõ tập xác định thì ta quy ước:

Tập xác định của hàm số y = f(x) là tập hợp tất cả các số thực x sao cho biểu thức f(x) có nghĩa.

+ Một hàm số có thể được cho bởi hai hay nhiều công thức.

2. Đồ thị hàm số

- Cho hàm số y = f(x) có tập xác định D.

Trên mặt phẳng tọa độ Oxy, đồ thị (C) của hàm số là tập hợp tất cả các điểm M(x; y) với x D và y = f(x).

Chú ý: Điểm M(xM; yM) thuộc đồ thị hàm số y = f(x) khi và chỉ khi xM D và yM = f(xM).

3. Hàm số đồng biến, hàm số nghịch biến

- Với hàm số y = f(x) xác định trên khoảng (a; b), ta nói:

+ Hàm số đồng biến trên khoảng (a; b) nếu

x1, x2 (a; b), x1 < x2 f(x1) < f(x2).

+ Hàm số nghịch biến trên khoảng (a; b) nếu

x1, x2 (a; b), x1 < x2 f(x1) > f(x2).

Nhận xét:

+ Khi hàm số đồng biến (tăng) trên khoảng (a; b) thì đồ thị của nó có dạng đi lên từ trái sang phải. Ngược lại, khi hàm số nghịch biến (giảm) trên khoảng (a; b) thì đồ thị của nó có dạng đi xuống từ trái sang phải.

4. Hàm số bậc hai

- Hàm số bậc hai theo biến x là hàm số cho bởi công thức có dạng y = f(x) = ax2 + bx + c với a, b, c là các số thực và a khác 0.

Tập xác định của hàm số bậc hai là ℝ.

5. Đồ thị hàm số bậc hai

- Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai y = ax2 + bx + c (với a ≠ 0) là một parabol (P):

+ Có đỉnh S với hoành độ xS=b2a, tung độ yS=Δ4a; (Δ = b2 – 4ac)

+ Có trục đối xứng là đường thẳng x=b2a (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay lên trên nếu a > 0, quay xuống dưới nếu a < 0;

+ Cắt trục tung tại điểm có tung độ bằng c, tức là đồ thị đi qua điểm có tọa độ (0; c).

Chú ý:

+ Nếu b = 2b’ thì (P) có đỉnh S b'a;Δ'a.

+ Nếu phương trình ax2 + bx + c = 0 có hai nghiệm x1; x2 thì đồ thị hàm số bậc hai y = ax2 + bx + c cắt trục hoành tại hai điểm lần lượt có hoành độ là hai nghiệm này.

*Cách vẽ đồ thị hàm số bậc hai:

Cách vẽ đồ thị hàm số bậc hai y = ax2 + bx + c (với a ≠ 0):

- Xác định tọa độ đỉnh Sb2a;Δ4a .

- Vẽ trục đối xứng d là đường thẳng x = b2a .

- Tìm tọa độ giao điểm của đồ thị với trục tung (điểm A(0; c)) và giao điểm của đồ thị với trục hoành (nếu có).

Xác định thêm điểm đối xứng với A qua trục đối xứng d, là điểm Bba;c .

- Vẽ parabol có đỉnh S, có trục đối xứng d, đi qua các điểm tìm được.

6. Sự biến thiên của hàm số bậc hai

- Dựa vào đồ thị hàm số bậc hai y = ax2 + bx + c (với a ≠ 0), ta có bảng tóm tắt về sự biến thiên của hàm số này như sau:

Chú ý: Từ bảng biến thiên của hàm số bậc hai, ta thấy:

- Khi a > 0, hàm số đạt giá trị nhỏ nhất bằng Δ4a tại x =b2a và hàm số có tập giá trị là T=Δ4a;+ .

- Khi a < 0, hàm số đạt giá trị lớn nhất bằng Δ4a tại x = b2a và hàm số có tập giá trị là T=;Δ4a .

7. Ứng dụng của hàm số bậc hai

Tầm bay cao và bay xa

Trong môn cầu lông, khi phát cầu, người chơi cần đánh cầu qua khỏi lưới sang phía sân đối phương và không được để cho cầu rơi ngoài biên.

Trong mặt phẳng tọa độ Oxy, chọn điểm có tọa độ (0; y0) là điểm xuất phát thì phương trình quỹ đạo của cầu lông khi rời khỏi mặt vợt là:

y=g.x22v02.cos2α+tanα.x+y0

Trong đó:

+ g là gia tốc trọng trường (thường được chọn là 9,8 m/s2);

+ α là góc phát cầu (so với phương ngang của mặt đất);

+ v0 là vận tốc ban đầu của cầu;

+ y0 là khoảng cách từ vị trí phát cầu đến mặt đất.

Đây là một hàm số bậc hai nên quỹ đạo chuyển động của cầu lông là một parabol.

Xét trường hợp lặng gió, với vận tốc ban đầu và góc phát cầu đã biết, cầu chuyển động theo quỹ đạo parabol nên sẽ:

- Đạt vị trí cao nhất tại đỉnh parabol, gọi là tầm bay cao;

- Rơi chạm đất ở vị trí cách nơi đứng phát cầu một khoảng, gọi là tầm bay xa.

Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Giá trị lượng giác của một góc từ 0 độ đến 180 độ

Bài 2: Định lí côsin và định lí sin

Bài 3: Giải tam giác và ứng dụng thực tế

Bài tập cuối chương 4

Bài 1: Khái niệm vectơ

Xem thêm tài liệu Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài tập cuối chương 3

1 1,849 26/09/2024
Tải về


Xem thêm các chương trình khác: