Giải Toán 10 Bài 4 (Chân trời sáng tạo): Các số đặc trưng đo mức độ phân tán của mẫu số liệu
Với giải bài tập Toán lớp 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 Bài 4.
Giải bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
Theo bạn, địa phương nào có thời tiết ôn hòa hơn?
Lời giải:
Lâm Đồng có thời tiết ôn hòa hơn do sự chênh lệch nhiệt độ giữa các tháng không lớn.
1. Khoảng biến thiên và khoảng tứ phân vị
b) Nhóm nào có thành tích chạy đồng đều hơn?
Lời giải:
a) Thời gian chạy nhanh nhất của nhóm 1 là 17 phút, thời gian chạy chậm nhất của nhóm 1 là 47 phút.
Độ chênh lệch giữa thời gian chạy của người nhanh nhất và người chậm nhất trong nhóm 1 là 47 - 17 = 30 phút.
Thời gian chạy nhanh nhất của nhóm 2 là 29 phút, thời gian chạy chậm nhất của nhóm 2 là 32 phút.
Độ chênh lệch giữa thời gian chạy của người nhanh nhất và người chậm nhất trong nhóm 2 là 32 - 29 = 3 phút.
b) Dựa vào mẫu số liệu trên, ta thấy nhóm 2 có thành tích chạy đồng đều hơn nhóm 1.
Thực hành 1 trang 121 Toán lớp 10 Tập 1: Hãy tìm khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu sau:
a) 10; 13; 15; 2; 10; 19; 2; 5; 7.
b) 15; 19; 10; 5; 9; 10; 1; 2; 5; 15.
Lời giải:
a) Giá trị cao nhất trong mẫu là: 19.
Giá trị thấp nhất trong mẫu là: 2.
Khoảng biến thiên của mẫu là: 19 - 2 = 17.
Sắp xếp mẫu theo thứ tự không giảm ta được:
2; 2; 5; 7; 10; 10; 13; 15; 19.
Cỡ mẫu bằng 9 nên tứ phân vị thứ hai là Q2 = 10.
Tứ phân vị thứ nhất là trung vị của mẫu 2; 2; 5; 7 là Q1 = (2 + 5) = 3,5.
Tứ phân vị thứ ba là trung vị của mẫu 10; 13; 15; 19 là Q3 = (13 + 15) = 14.
Khoảng tứ phân vị của mẫu trên là: 14 - 3,5 = 10,5.
b) Giá trị cao nhất trong mẫu là: 19.
Giá trị thấp nhất trong mẫu là: 1.
Khoảng biến thiên của mẫu là: 19 - 1 = 18.
Sắp xếp mẫu theo thứ tự không giảm ta được:
1; 2; 5; 5; 9; 10; 10; 15; 15; 19.
Cỡ mẫu bằng 10 nên tứ phân vị thứ hai là Q2 = (9 + 10) = 9,5.
Tứ phân vị thứ nhất là trung vị của mẫu 1; 2; 5; 5; 9 là Q1 = 5.
Tứ phân vị thứ ba là trung vị của mẫu 10; 10; 15; 15; 19 là Q3 = 15.
Khoảng tứ phân vị của mẫu trên là: 15 - 5 = 10.
b) Hãy cho biết trong một năm, nhiệt độ ở địa phương nào ít thay đổi hơn.
Lời giải:
a) +) Tỉnh Lai Châu:
Sắp xếp nhiệt độ trung bình các tháng trong năm 2019 của tỉnh Lai Châu ta được mẫu sau:
14,2; 14,8; 18,6; 18,8; 20,3; 21,0; 22,7; 23,5; 23,6; 24,2; 24,6; 24,7.
Khi đó khoảng biến thiên nhiệt độ trung bình tháng của tỉnh Lai Châu là: 24,7 - 14,2 = 10,5.
Cỡ mẫu bằng 12 nên tứ phân vị thứ hai của mẫu là Q2 = (21 + 22,7) = 21,85.
Tứ phân vị thứ nhất là trung vị của mẫu 14,2; 14,8; 18,6; 18,8; 20,3; 21,0 là Q1 = (18,6 + 18,8) = 18,7.
Tứ phân vị thứ ba là trung vị của mẫu 22,7; 23,5; 23,6; 24,2; 24,6; 24,7 là Q3 = (23,6 + 24,2) = 23,9.
Khoảng tứ phân vị nhiệt độ trung bình tháng của tỉnh Lai Châu là: 23,9 - 18,7 = 5,2.
+) Tỉnh Lâm Đồng:
Sắp xếp nhiệt độ trung bình các tháng trong năm 2019 của tỉnh Lâm Đồng ta được mẫu sau:
16,0; 16,3; 17,4; 17,5; 18,5; 18,6; 18,7; 19,3; 19,5; 19,8; 20,2; 20,3.
Khi đó khoảng biến thiên nhiệt độ trung bình tháng của tỉnh Lâm Đồng là: 20,3 - 16 = 4,3.
Cỡ mẫu bằng 12 nên tứ phân vị thứ hai của mẫu là Q2 = (18,6 + 18,7) = 18,65.
Tứ phân vị thứ nhất là trung vị của mẫu 16,0; 16,3; 17,4; 17,5; 18,5; 18,6 là Q1 = (17,4 + 17,5) = 17,45.
Tứ phân vị thứ ba là trung vị của mẫu 18,7; 19,3; 19,5; 19,8; 20,2; 20,3 là Q3 = (19,5 + 19,8) = 19,65.
Khoảng tứ phân vị nhiệt độ trung bình tháng của tỉnh Lâm Đồng là: 19,65 - 17,45 = 2,2.
b) Ta thấy khoảng biến thiên và khoảng tứ phân vị của nhiệt độ trung bình mỗi tháng của tỉnh Lai Châu lớn hơn tỉnh Lâm Đồng nên nhiệt độ tỉnh Lâm Đồng ổn định hơn.
Lời giải:
Sắp xếp mẫu trên theo thứ tự không giảm ta được mẫu:
3; 3; 9; 9; 10; 10; 12; 12; 37.
Cỡ mẫu bằng 9 nên tứ phân vị thứ hai là Q2 = 10,
Tứ phân vị thứ nhất là trung vị của mẫu 3; 3; 9; 9 là Q1 = (3 + 9) = 6.
Tứ phân vị thứ ba là trung vị của mẫu 10; 12; 12; 37 là Q3 = (12 +12) = 12.
Khi đó = Q3 - Q1 = 12 - 6 = 6.
Ta có Q3 + 1,5 = 12 + 1,5 . 6 = 21, Q1 - 1,5 = 6 - 9 = -3.
Do đó giá trị ngoại lệ của mẫu số liệu trên là 37.
2. Phương sai và độ lệch chuẩn
a) Tính kết quả trung bình của mỗi cung thủ trên.
b) Cung thủ nào có kết quả các lần bắn ổn định hơn?
Lời giải:
a) Kết quả trung bình của cung thủ A là:
(8 + 9 + 10 + 7 + 6 + 10 + 6 + 7 + 9 + 8) = 8.
Kết quả trung bình của cung thủ B là:
(10 + 6 + 8 + 7 + 9 + 9 + 8 + 7 + 8 + 8) = 8.
b) Dựa vào mẫu số liệu, ta thấy kết quả giữa các lần bắn liên tiếp của cung thủ B có sự chênh lệch nhỏ hơn cung thủ A nên cung thủ B có kết quả các lần bắn ổn định hơn.
a) Hãy tính phương sai và độ lệch chuẩn của dữ liệu từng tỉnh.
b) Nêu nhận xét về sự thay đổi tổng số giờ nắng theo từng tháng ở mỗi tỉnh.
Lời giải:
a) +) Tỉnh Tuyên Quang:
Số trung bình tổng số giờ nắng trong năm 2019 của tỉnh Tuyên Quang là:
(25 + 89 + 72 + 117 + 106 + 177 + 156 + 203 + 227 + 146 + 117 + 145)
≈ 131,66.
Phương sai của mẫu số liệu tổng số giờ nắng trong năm 2019 của tỉnh Tuyên Quang là:
S2 = (252 + 892 + 722 + 1172 + 1062 + 1772 + 1562 + 2032 + 2272 + 1462 + 1172 + 1452) -131,662 ≈ 2 922,98.
Độ lệch chuẩn của mẫu số liệu tổng số giờ nắng trong năm 2019 của tỉnh Tuyên Quang là:
S = ≈ 54,06.
+) Tỉnh Cà Mau:
Số trung bình tổng số giờ nắng trong năm 2019 của tỉnh Cà Mau là:
(180 + 223 + 257 + 245 + 191 + 111 + 141 + 134 + 130 + 122 + 157 + 173) = 172.
Phương sai của mẫu số liệu tổng số giờ nắng trong năm 2019 của tỉnh Cà Mau là:
S2 = (1802 + 2232 + 2572 + 2452 + 1912 + 1112 + 1412 + 1342 + 1302 + 1222 + 1572 + 1732) - 1722 = 2 183.
Độ lệch chuẩn của mẫu số liệu tổng số giờ nắng trong năm 2019 của tỉnh Tuyên Quang là:
S = ≈ 46,72.
b) Ta thấy 46,72 < 54,06 nên Cà Mau có sự thay đổi tổng số giờ nắng theo từng tháng nhỏ hơn Tuyên Quang.
Bài tập
Lời giải:
Học sinh tự thực hiện việc đo, sau đó tính phương sai, độ lệch chuẩn của chiều cao các bạn nam và các bạn nữ, sau đó so sánh để thu được kết quả.
b) 13; 37; 64; 12; 26; 43; 29; 23.
Lời giải:
a) Sắp xếp mẫu số liệu trên theo thứ tự không giảm ta được mẫu:
2; 3; 4; 4; 5; 6; 6; 7; 8.
Khoảng biến thiên của mẫu số liệu trên là: 8 - 2 = 6.
Cỡ mẫu bằng 9 nên giá trị tứ phân vị thứ hai là Q2 = 5.
Giá trị tứ phân vị thứ nhất là trung vị của mẫu 2; 3; 4; 4 là Q1 = (3 + 4) = 3,5.
Giá trị tứ phân vị thứ ba là trung vị của mẫu 6; 6; 7; 8 là Q3 = (6 + 7) = 6,5.
Khoảng tứ phân vị của mẫu số liệu trên là: = 6,5 - 3,5 = 3.
Ta có Q3 + 1,5 = 6,5 + 1,5 . 3 = 11; Q1 - 1,5 = 3,5 - 1,5 . 3 = -1.
Do đó mẫu trên không có giá trị ngoại lệ.
b) Sắp xếp mẫu số liệu trên theo thứ tự không giảm ta được mẫu:
12; 13; 23; 26; 29; 37; 43; 64.
Khoảng biến thiên của mẫu số liệu trên là: 64 - 12 = 52.
Cỡ mẫu bằng 8 nên giá trị tứ phân vị thứ hai là Q2 = (26 + 29) = 27,5.
Giá trị tứ phân vị thứ nhất là trung vị của mẫu 12; 13; 23; 26 là Q1 = (13 + 23) = 18.
Giá trị tứ phân vị thứ ba là trung vị của mẫu 29; 37; 43; 64 là Q3 = (37 + 43) = 40.
Khoảng tứ phân vị của mẫu số liệu trên là: = 40 - 18 = 22.
Ta có Q3 + 1,5 = 40 + 1,5 . 22 = 73; Q1 - 1,5 = 18 - 1,5 . 22 = -15.
Do đó mẫu trên không có giá trị ngoại lệ.
a)
b)
Lời giải:
a) Số trung bình của mẫu số liệu trên là:
= 0
Phương sai của mẫu số liệu trên là:
[10 . (-2)2 + 20 . (-1)2 + 20 . 12 + 10 . 22] = .
Độ lệch chuẩn của mẫu số liệu trên là:
.
Khoảng biến thiên của mẫu số liệu trên là: 2 - (-2) = 4.
Cỡ mẫu bằng 90 nên tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 45 và 46 của mẫu số liệu là Q2 =(0 + 0) = 0.
Tứ phân vị thứ nhất là trung vị của mẫu gồm các giá trị – 2; – 1; 0 với cỡ mẫu 45 nên tứ phân vị thứ nhất là số liệu thứ 23 trong mẫu số liệu là Q1 = -1.
Tứ phân vị thứ ba là trung vị của mẫu gồm các giá trị 0; 1; 2 với cỡ mẫu 45 nên tứ phân vị thứ ba là số liệu thứ 78 trong mẫu số liệu là Q3 = 1.
Khoảng tứ phân vị của mẫu số liệu trên là: 1 - (-1) = 2.
b) Gọi cỡ mẫu là 10.
Khi đó giá trị 0 xuất hiện 0,1 . 10 = 1 lần, giá trị 1 xuất hiện 0,2 . 10 = 2 lần, giá trị 2 xuất hiện 0,4 . 10 = 4 lần, giá trị 3 xuất hiện 0,2 . 10 = 2 lần, giá trị 4 xuất hiện 0,1 . 10 = 1 lần.
Số trung bình của mẫu số liệu trên là:
= 2.
Phương sai của mẫu số liệu trên là:
(2 . 12 + 4 . 22 + 2 . 32 + 1 . 42) - 22 = 1,2.
Độ lệch chuẩn của mẫu số liệu trên là:
.
Khoảng biến thiên của mẫu số liệu trên là: 4 - 0 = 4.
Cỡ mẫu bằng 10 nên tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 5 và thứ 6 trong mẫu số liệu là Q2 = (2 + 2) = 2.
Tứ phân vị thứ nhất là trung vị của mẫu 0; 1; 1; 2; 2 với cỡ mẫu bằng 5 là số liệu thứ 3 trong mẫu số liệu là Q1 = 1.
Tứ phân vị thứ nhất là trung vị của mẫu 2; 2; 3; 3; 4 với cỡ mẫu bằng 5 là số liệu thứ 8 trong mẫu số liệu là Q3 = 3.
Khoảng tứ phân vị của mẫu số liệu trên là 3 - 1 = 2.
Mẫu 1: 0,1; 0,3; 0,5; 0,5; 0,3; 0,7.
Mẫu 2: 1,1; 1,3; 1,5; 1,5; 1,3; 1,7.
Lời giải
+) Mẫu 1:
Số trung bình của mẫu số liệu 1 là: (0,1 + 0,3 + 0,5 + 0,5 + 0,3 + 0,7) = 0,4.
Phương sai của mẫu số liệu 1 là: (0,12 + 0,32 + 0,52 + 0,52 + 0,32 + 0,72) - 0,42 = .
Độ lệch chuẩn của mẫu số liệu 1 là: .
+) Mẫu 2:
Số trung bình của mẫu số liệu 2 là: (1,1 + 1,3 + 1,5 + 1,5 + 1,3 + 1,7) = 1,4.
Phương sai của mẫu số liệu 2 là: (1,12 + 1,32 + 1,52 + 1,52 + 1,32 + 1,72) - 1,42 = .
Độ lệch chuẩn của mẫu số liệu 2 là: .
+) Mẫu 3:
Số trung bình của mẫu số liệu 3 là: (1 + 3 + 5 + 5 + 3 + 7) = 4.
Phương sai của mẫu số liệu 3 là: (12 + 32 + 52 + 52 + 32 + 72) - 42 = .
Độ lệch chuẩn của mẫu số liệu 3 là: .
Số trung bình của mẫu 1 nhỏ hơn mẫu 2 và số trung bình của mẫu 2 nhỏ hơn mẫu 3.
Phương sai của mẫu số 1 bằng mẫu số 2 và bằng phương sai của mẫu số 3.
Độ lệch chuẩn của mẫu số 1 bằng mẫu số 2 và bằng độ lệch chuẩn của mẫu số 3.
a) Hãy tính độ lệch chuẩn và khoảng biến thiên của sản lượng lúa từng tỉnh.
b) Tỉnh nào có sản lượng lúa ổn định hơn? Tại sao?
Lời giải:
a) +) Tỉnh Thái Bình:
Số trung bình về sản lượng lúa của tỉnh Thái Bình là:
(1 061,9 + 1 061,9 + 1 053,6 + 942,6 + 1 030,4) = 1 030,08.
Phương sai của mẫu số liệu về sản lượng lúa của tỉnh Thái Bình là:
(1 061,92 + 1 061,92 + 1 053,62 + 942,62 + 1 030,42) - 1 030,082 ≈ 2 046,21.
Độ lệch chuẩn của mẫu số liệu về sản lượng lúa của tỉnh Thái Bình là:
≈ 45,24.
Khoảng biến thiên sản lượng lúa của tỉnh Thái Bình là: 1 061,9 - 942,6 = 119,3.
+) Tỉnh Hậu Giang:
Số trung bình về sản lượng lúa của tỉnh Hậu Giang là:
(1 204,6 + 1 293,1 + 1 231,0 + 1 261,0 + 1 246,1) = 1 247,16.
Phương sai của mẫu số liệu về sản lượng lúa của tỉnh Hậu Giang là:
(1 204,62 + 1 293,12 + 1 231,02 + 1 261,02 + 1 246,12) - 1 247,162 ≈ 875,13.
Độ lệch chuẩn của mẫu số liệu về sản lượng lúa của tỉnh Hậu Giang là:
≈ 29,58.
Khoảng biến thiên sản lượng lúa của tỉnh Hậu Giang là: 1 293,1 - 1 204,6 = 88,5.
b) Độ lệch chuẩn của mẫu số liệu về sản lượng lúa của tỉnh Hậu Giang nhỏ hơn tỉnh Thái Bình nên tỉnh Hậu Giang có sản lượng lúa ổn định hơn.
Lời giải:
a) +) Nhà máy A:
Mức lương hàng tháng của công nhân nhà máy A sau khi được sắp xếp theo thứ tự không giảm tạo thành mẫu:
4; 4; 4; 5; 5; 5; 6; 47.
Số trung bình mức lương hàng tháng của công nhân nhà máy A là:
(4 + 4 + 4 + 5 + 5 + 5 + 6 + 47) = 10.
Giá trị 4 và 5 cùng xuất hiện nhiều nhất trong mẫu số liệu nên mốt của mẫu số liệu là 4 và 5.
Cỡ mẫu bằng 8 nên tứ phân vị thứ hai là Q2 = (5 + 5) = 5.
Tứ phân vị thứ nhất là trung vị của mẫu 4; 4; 4; 5 là Q1 = (4 + 4) = 4.
Tứ phân vị thứ ba là trung vị của mẫu 5; 5; 6; 47 là Q3 = (5 + 6) = 5,5.
Phương sai của mẫu số liệu trên là:
(42 + 42 + 42 + 52 + 52 + 52 + 62 + 472) - 102 = 196.
Độ lệch chuẩn của mẫu số liệu trên là: = 14.
+) Nhà máy B:
Mức lương hàng tháng của công nhân nhà máy B sau khi được sắp xếp theo thứ tự không giảm tạo thành mẫu:
2; 8; 9; 9; 9; 9; 9; 10; 11.
Số trung bình mức lương hàng tháng của công nhân nhà máy B là:
(2 + 8 + 9 . 5 + 10 + 11) ≈ 8,4.
Giá trị 9 xuất hiện nhiều nhất trong mẫu số liệu nên mốt của mẫu số liệu là 9.
Cỡ mẫu bằng 9 nên tứ phân vị thứ hai là Q2 = 9.
Tứ phân vị thứ nhất là trung vị của mẫu 2; 8; 9; 9 là Q1 = (8 + 9) = 8,5.
Tứ phân vị thứ ba là trung vị của mẫu 9; 9; 10; 11 là Q3 = (9 + 10) = 9,5.
Phương sai của mẫu số liệu trên là:
(22 + 82 + 5 . 92 + 102 + 112) - 8,42 ≈ 6,55.
Độ lệch chuẩn của mẫu số liệu trên là: ≈ 2,56.
b) Tại nhà máy A ta có Q3 + 1,5 = 5,5 + 1,5 . (5,5 - 4) = 7,75; Q1 - 1,5 = 4 - 1,5 . (5,5 - 4) = 1,75.
Do đó giá trị ngoại lệ của mẫu số liệu mức lương hàng tháng của công nhân nhà máy A là 47.
Tại nhà máy B ta có Q3 + 1,5 = 9,5 + 1,5 . (9,5 - 8,5) = 11; Q1 - 1,5 = 8,5 - 1,5 . (9,5 - 8,5) = 7.
Do đó giá trị ngoại lệ của mẫu số liệu mức lương hàng tháng của công nhân nhà máy B là 2.
Độ lệch chuẩn của mẫu số liệu mức lương hàng thàng của công nhân nhà máy B nhỏ hơn nhà máy A nên công nhân nhà máy B có mức lương cao hơn.
Lý thuyết Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo
1. Khoảng biến thiên và khoảng tứ phân vị
1.1. Khoảng biến thiên và khoảng tứ phân vị
Sắp xếp mẫu số liệu theo thứ tự không giảm, ta được:
x1 ≤ x2 ≤ … ≤ xn.
• Khoảng biến thiên của một mẫu số liệu, kí hiệu là R, là hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất của mẫu số liệu đó, tức là:
R = xn – x1.
• Khoảng tứ phân vị, kí hiệu là ∆Q, là hiệu giữa Q3 và Q1, tức là:
∆Q = Q3 – Q1.
Ví dụ: Hãy tính khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu:
10; 3; 5; 7; 20; 1; 4; 9.
Hướng dẫn giải
Sắp xếp mẫu số liệu theo thứ tự không giảm, ta được: 1; 3; 4; 5; 7; 9; 10; 20.
- Khoảng biến thiên của mẫu số liệu là R = 20 – 1 = 19.
- Cỡ mẫu là n = 8, là số chẵn nên giá trị tứ phân vị thứ hai là Q2 = 6.
- Tứ phân vị thứ nhất là trung vị của mẫu: 10; 3; 5; 7. Do đó Q1 = 4.
- Tứ phân vị thứ 3 là trung vị của mẫu: 7; 9; 10; 20. Do đó Q3 = 9,5.
- Khoảng tứ phân vị của mẫu là: ∆Q = 9,5 – 4 = 5,5.
1.2. Ý nghĩa của khoảng biến thiên và khoảng tứ phân vị
Khoảng biến thiên đặc trưng cho độ phân tán của toàn bộ mẫu số liệu.
Khoảng tứ phân vị đặc trưng cho độ phân tán của một nửa các số liệu, có giá trị thuộc đoạn từ Q1 đến Q3 trong mẫu.
Khoảng tứ phân vị không bị ảnh hưởng bởi các giá trị rất lớn hoặc rất bé trong mẫu.
Ví dụ: Dưới đây là bảng số liệu thống kê của Biểu đồ nhiệt độ trung bình các tháng trong năm 2019 của hai tỉnh Lai Châu và Lâm Đồng (được đề cập đến ở hoạt động khởi động của bài học).
a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của nhiệt độ trung bình mỗi tháng của tỉnh Lai Châu và Lâm Đồng.
b) Hãy cho biết trong một năm, nhiệt độ ở địa phương nào ít thay đổi hơn.
Hướng dẫn giải
a)
* Tỉnh Lai Châu:
Sắp xếp các số liệu theo thứ tự không giảm, ta được:
14,2; 14,8; 18,6; 18,8; 20,3; 21,0; 22,7; 23,5; 23,6; 24,2; 24,6; 24,7.
+ Khoảng biến thiên của mẫu số liệu là: R = 24,7 – 14,2 = 10,5.
+ Cỡ mẫu là n = 12 là số chẵn nên giá trị tứ phân vị thứ hai là:
Q2 = .
+ Tứ phân vị thứ nhất là trung vị của mẫu: 14,2; 14,8; 18,6; 18,8; 20,3; 21,0.
Do đó Q1 = .
+ Tứ phân vị thứ ba là trung vị của mẫu: 22,7; 23,5; 23,6; 24,2; 24,6; 24,7.
Do đó Q3 = .
+ Khoảng tứ phân vị của mẫu là: ∆Q = 23,9 – 18,7 = 5,2.
* Tỉnh Lâm Đồng:
Sắp xếp các số liệu theo thứ tự không giảm, ta được:
16,0; 16,3; 17,4; 17,5; 18,5; 18,6; 18,7; 19,3; 19,5; 19,8; 20,2; 20,3.
+ Khoảng biến thiên của mẫu số liệu là: R' = 20,3 – 16,0 = 4,3.
+ Cỡ mẫu là n = 12 là số chẵn nên giá trị tứ phân vị thứ hai là:
Q'2 = .
+ Tứ phân vị thứ nhất là trung vị của mẫu: 16,0; 16,3; 17,4; 17,5; 18,5; 18,6.
Do đó Q'1 = .
+ Tứ phân vị thứ ba là trung vị của mẫu: 18,7; 19,3; 19,5; 19,8; 20,2; 20,3.
Do đó Q'3 = .
+ Khoảng tứ phân vị của mẫu là: ∆'Q = 19,65 – 17,45 = 2,2.
b) Xét về cả khoảng biến thiên và khoảng tứ phân vị của nhiệt độ trung bình mỗi tháng của cả hai tỉnh, ta thấy: 10,5 > 4,3 hay R > R' và 5,2 > 2,2 hay ∆Q > ∆'Q.
Điều đó có nghĩa là trong một năm, nhiệt độ ở Lâm Đồng ít thay đổi hơn.
1.3. Giá trị ngoại lệ
Khoảng tứ phân vị được dùng để xác định các giá trị ngoại lệ trong mẫu, đó là các giá trị quá nhỏ hay quá lớn so với đa số các giá trị của mẫu. Cụ thể, phần tử x trong mẫu là giá trị ngoại lệ nếu x > Q3 + 1,5∆Q hoặc x < Q1 – 1,5∆Q.
Sự xuất hiện của các giá trị ngoại lệ làm cho số trung bình và phạm vi của mẫu thay đổi lớn. Do đó, khi mẫu có giá trị ngoại lệ, người ta thường sử dụng trung vị và khoảng tứ phân vị để đo mức độ tập trung và mức độ phân tán của đa số các phần tử trong mẫu số liệu.
Ví dụ: Trong ví dụ ở phần 1.1, ta có:
Q1 – 1,5∆Q = 4 – 1,5 . 5,5 = – 4,25
Q3 + 1,5∆Q = 9,5 + 1,5 . 5,5 = 17,75
Do đó, mẫu có một giá trị ngoại lệ là 20.
2. Phương sai và độ lệch chuẩn
2.1. Công thức tính phương sai và độ lệch chuẩn
* Giả sử ta có một mẫu số liệu là x1, x2, …, xn.
• Phương sai của mẫu số liệu này, kí hiệu là S2, được tính bởi công thức:
trong đó là số trung bình của mẫu số liệu.
• Căn bậc hai của phương sai được gọi là độ lệch chuẩn, kí hiệu là S.
Chú ý: Có thể biến đổi công thức tính phương sai ở trên thành:
.
Trong thống kê, người ta cũng quan tâm đến phương sai hiệu chỉnh, kí hiệu là , được tính bởi công thức:
.
* Giả sử mẫu số liệu được cho dưới dạng bảng tần số:
Giá trị |
x1 |
x2 |
… |
xk |
Tần số |
n1 |
n2 |
… |
nk |
Khi đó, công thức tính phương sai trở thành:
trong đó n = n1 + n2 + … + nk.
Có thể biến đổi công thức tính phương sai trên thành
.
Ví dụ: Tính phương sai và độ lệch chuẩn của mẫu số liệu sau:
8; 10; 9; 7; 6; 10; 6; 7; 8; 9.
Hướng dẫn giải
Cỡ mẫu n = 10.
Số trung bình: (8 + 10 + 9 + 7 + 6 + 10 + 6 + 7 + 8 + 9) : 10 = 8.
Phương sai mẫu số liệu là:
S2 = (82 + 102 + 92 + 72 + 62 + 102 + 62 + 72 + 82 + 92) – 82 = 2.
Độ lệch chuẩn mẫu số liệu là S = .
Ví dụ: Điều tra số con của mỗi hộ gia đình trong tổ dân cư xóm 2, kết quả được ghi lại ở bảng sau:
Số con |
0 |
1 |
2 |
3 |
4 |
Số hộ gia đình |
4 |
4 |
8 |
3 |
1 |
Tính phương sai và độ lệch chuẩn của mẫu số liệu.
Hướng dẫn giải
Tổng số hộ gia đình là: n = 4 + 4 + 8 + 3 + 1 = 20 (hộ gia đình).
Số trung bình của mẫu số liệu trên là
(4 . 0 + 4 . 1 + 8 . 2 + 3 . 3 + 1 . 4) = 1,65
Phương sai của mẫu số liệu trên là:
S2 = (4 . 02 + 4 . 12 + 8 . 22 + 3 . 32 + 1 . 42) – 1,652 = 1,2275
Độ lệch chuẩn của mẫu số liệu trên là:
.
2.2. Ý nghĩa của phương sai và độ lệch chuẩn
Phương sai là trung bình cộng của các bình phương độ lệch từ mỗi giá trị của mẫu số liệu đến số trung bình.
Phương sai và độ lệch chuẩn được dùng để đo mức độ phân tán của các số liệu trong mẫu quanh số trung bình. Phương sai và độ lệch chuẩn càng lớn thì các giá trị của mẫu càng cách xa nhau (có độ phân tán lớn).
Ví dụ: Bảng dưới đây thống kê tổng số giờ nắng trong năm 2019 theo từng tháng được đo bởi hai trạm quan sát khí tượng đặt ở Tuyên Quang và Cà Mau.
a) Hãy tính phương sai và độ lệch chuẩn của dữ liệu từng tỉnh.
b) Nêu nhận xét về sự thay đổi tổng số giờ nắng theo từng tháng ở mỗi tỉnh.
Hướng dẫn giải
a)
* Tỉnh Tuyên Quang:
+ Số trung bình:
.
+ Phương sai mẫu số liệu ở tỉnh Tuyên Quang là:≈ 2920,34.
+ Độ lệch chuẩn mẫu số liệu ở tỉnh Tuyên Quang là:
S1 = .
* Tỉnh Cà Mau:
+ Số trung bình:
.
+ Phương sai mẫu số liệu ở tỉnh Cà Mau là:
(1802 + 2232 + 2572 + 2452 + 1912 + 1112 + 1412 + 1342 + 1302 + 1222 + 1572 + 1732) – 1722 = 2183.
+ Độ lệch chuẩn mẫu số liệu ở tỉnh Cà Mau là:
S2 = .
b) Phương sai mẫu và độ lệch chuẩn mẫu số liệu ở tỉnh Tuyên Quang cao hơn tỉnh Cà Mau nên tổng số giờ nắng trong năm 2019 theo từng tháng ở tỉnh Tuyên Quang có độ phân tán cao hơn ở tỉnh Cà Mau. Do đó, sự thay đổi tổng số giờ nắng theo từng tháng ở tỉnh Cà Mau ổn định (có ít sự thay đổi) hơn so với tỉnh Tuyên Quang.
Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Dùng bảng tính để tính các số đặc trưng của mẫu số liệu thống kê
Xem thêm tài liệu Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Soạn văn lớp 10 (ngắn nhất) – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Giải sbt Ngữ văn lớp 10 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Văn mẫu lớp 10 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 10 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Giải sbt Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 10 Friends Global đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 Friends Global
- Giải sgk Vật lí 10 – Chân trời sáng tạo
- Giải sbt Vật lí 10 – Chân trời sáng tạo
- Lý thuyết Vật lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Vật lí 10 – Chân trời sáng tạo
- Giải sgk Hóa học 10 – Chân trời sáng tạo
- Lý thuyết Hóa học 10 – Chân trời sáng tạo
- Giải sbt Hóa học 10 – Chân trời sáng tạo
- Giải Chuyên đề Hóa học 10 – Chân trời sáng tạo
- Giải sgk Sinh học 10 – Chân trời sáng tạo
- Giải sbt Sinh học 10 – Chân trời sáng tạo
- Lý thuyết Sinh học 10 – Chân trời sáng tạo
- Giải Chuyên đề Sinh học 10 – Chân trời sáng tạo
- Giải sgk Lịch sử 10 – Chân trời sáng tạo
- Giải sbt Lịch sử 10 – Chân trời sáng tạo
- Giải Chuyên đề Lịch sử 10 – Chân trời sáng tạo
- Lý thuyết Lịch sử 10 – Chân trời sáng tạo
- Giải sgk Địa lí 10 – Chân trời sáng tạo
- Lý thuyết Địa Lí 10 - Chân trời sáng tạo
- Giải sbt Địa lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Địa lí 10 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải Chuyên đề Kinh tế và pháp luật 10 – Chân trời sáng tạo
- Lý thuyết KTPL 10 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 10 – Chân trời sáng tạo