Giải Toán 10 trang 125 Tập 1 Chân trời sáng tạo
Với giải bài tập Toán lớp 10 trang 125 Tập 1 trong Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 125 Tập 1.
Giải Toán 10 trang 125 Tập 1
a)
b)
Lời giải:
a) Số trung bình của mẫu số liệu trên là:
= 0
Phương sai của mẫu số liệu trên là:
[10 . (-2)2 + 20 . (-1)2 + 20 . 12 + 10 . 22] = .
Độ lệch chuẩn của mẫu số liệu trên là:
.
Khoảng biến thiên của mẫu số liệu trên là: 2 - (-2) = 4.
Cỡ mẫu bằng 90 nên tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 45 và 46 của mẫu số liệu là Q2 =(0 + 0) = 0.
Tứ phân vị thứ nhất là trung vị của mẫu gồm các giá trị – 2; – 1; 0 với cỡ mẫu 45 nên tứ phân vị thứ nhất là số liệu thứ 23 trong mẫu số liệu là Q1 = -1.
Tứ phân vị thứ ba là trung vị của mẫu gồm các giá trị 0; 1; 2 với cỡ mẫu 45 nên tứ phân vị thứ ba là số liệu thứ 78 trong mẫu số liệu là Q3 = 1.
Khoảng tứ phân vị của mẫu số liệu trên là: 1 - (-1) = 2.
b) Gọi cỡ mẫu là 10.
Khi đó giá trị 0 xuất hiện 0,1 . 10 = 1 lần, giá trị 1 xuất hiện 0,2 . 10 = 2 lần, giá trị 2 xuất hiện 0,4 . 10 = 4 lần, giá trị 3 xuất hiện 0,2 . 10 = 2 lần, giá trị 4 xuất hiện 0,1 . 10 = 1 lần.
Số trung bình của mẫu số liệu trên là:
= 2.
Phương sai của mẫu số liệu trên là:
(2 . 12 + 4 . 22 + 2 . 32 + 1 . 42) - 22 = 1,2.
Độ lệch chuẩn của mẫu số liệu trên là:
.
Khoảng biến thiên của mẫu số liệu trên là: 4 - 0 = 4.
Cỡ mẫu bằng 10 nên tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 5 và thứ 6 trong mẫu số liệu là Q2 = (2 + 2) = 2.
Tứ phân vị thứ nhất là trung vị của mẫu 0; 1; 1; 2; 2 với cỡ mẫu bằng 5 là số liệu thứ 3 trong mẫu số liệu là Q1 = 1.
Tứ phân vị thứ nhất là trung vị của mẫu 2; 2; 3; 3; 4 với cỡ mẫu bằng 5 là số liệu thứ 8 trong mẫu số liệu là Q3 = 3.
Khoảng tứ phân vị của mẫu số liệu trên là 3 - 1 = 2.
Mẫu 1: 0,1; 0,3; 0,5; 0,5; 0,3; 0,7.
Mẫu 2: 1,1; 1,3; 1,5; 1,5; 1,3; 1,7.
Lời giải
+) Mẫu 1:
Số trung bình của mẫu số liệu 1 là: (0,1 + 0,3 + 0,5 + 0,5 + 0,3 + 0,7) = 0,4.
Phương sai của mẫu số liệu 1 là: (0,12 + 0,32 + 0,52 + 0,52 + 0,32 + 0,72) - 0,42 = .
Độ lệch chuẩn của mẫu số liệu 1 là: .
+) Mẫu 2:
Số trung bình của mẫu số liệu 2 là: (1,1 + 1,3 + 1,5 + 1,5 + 1,3 + 1,7) = 1,4.
Phương sai của mẫu số liệu 2 là: (1,12 + 1,32 + 1,52 + 1,52 + 1,32 + 1,72) - 1,42 = .
Độ lệch chuẩn của mẫu số liệu 2 là: .
+) Mẫu 3:
Số trung bình của mẫu số liệu 3 là: (1 + 3 + 5 + 5 + 3 + 7) = 4.
Phương sai của mẫu số liệu 3 là: (12 + 32 + 52 + 52 + 32 + 72) - 42 = .
Độ lệch chuẩn của mẫu số liệu 3 là: .
Số trung bình của mẫu 1 nhỏ hơn mẫu 2 và số trung bình của mẫu 2 nhỏ hơn mẫu 3.
Phương sai của mẫu số 1 bằng mẫu số 2 và bằng phương sai của mẫu số 3.
Độ lệch chuẩn của mẫu số 1 bằng mẫu số 2 và bằng độ lệch chuẩn của mẫu số 3.
a) Hãy tính độ lệch chuẩn và khoảng biến thiên của sản lượng lúa từng tỉnh.
b) Tỉnh nào có sản lượng lúa ổn định hơn? Tại sao?
Lời giải:
a) +) Tỉnh Thái Bình:
Số trung bình về sản lượng lúa của tỉnh Thái Bình là:
(1 061,9 + 1 061,9 + 1 053,6 + 942,6 + 1 030,4) = 1 030,08.
Phương sai của mẫu số liệu về sản lượng lúa của tỉnh Thái Bình là:
(1 061,92 + 1 061,92 + 1 053,62 + 942,62 + 1 030,42) - 1 030,082 ≈ 2 046,21.
Độ lệch chuẩn của mẫu số liệu về sản lượng lúa của tỉnh Thái Bình là:
≈ 45,24.
Khoảng biến thiên sản lượng lúa của tỉnh Thái Bình là: 1 061,9 - 942,6 = 119,3.
+) Tỉnh Hậu Giang:
Số trung bình về sản lượng lúa của tỉnh Hậu Giang là:
(1 204,6 + 1 293,1 + 1 231,0 + 1 261,0 + 1 246,1) = 1 247,16.
Phương sai của mẫu số liệu về sản lượng lúa của tỉnh Hậu Giang là:
(1 204,62 + 1 293,12 + 1 231,02 + 1 261,02 + 1 246,12) - 1 247,162 ≈ 875,13.
Độ lệch chuẩn của mẫu số liệu về sản lượng lúa của tỉnh Hậu Giang là:
≈ 29,58.
Khoảng biến thiên sản lượng lúa của tỉnh Hậu Giang là: 1 293,1 - 1 204,6 = 88,5.
b) Độ lệch chuẩn của mẫu số liệu về sản lượng lúa của tỉnh Hậu Giang nhỏ hơn tỉnh Thái Bình nên tỉnh Hậu Giang có sản lượng lúa ổn định hơn.
Lời giải:
a) +) Nhà máy A:
Mức lương hàng tháng của công nhân nhà máy A sau khi được sắp xếp theo thứ tự không giảm tạo thành mẫu:
4; 4; 4; 5; 5; 5; 6; 47.
Số trung bình mức lương hàng tháng của công nhân nhà máy A là:
(4 + 4 + 4 + 5 + 5 + 5 + 6 + 47) = 10.
Giá trị 4 và 5 cùng xuất hiện nhiều nhất trong mẫu số liệu nên mốt của mẫu số liệu là 4 và 5.
Cỡ mẫu bằng 8 nên tứ phân vị thứ hai là Q2 = (5 + 5) = 5.
Tứ phân vị thứ nhất là trung vị của mẫu 4; 4; 4; 5 là Q1 = (4 + 4) = 4.
Tứ phân vị thứ ba là trung vị của mẫu 5; 5; 6; 47 là Q3 = (5 + 6) = 5,5.
Phương sai của mẫu số liệu trên là:
(42 + 42 + 42 + 52 + 52 + 52 + 62 + 472) - 102 = 196.
Độ lệch chuẩn của mẫu số liệu trên là: = 14.
+) Nhà máy B:
Mức lương hàng tháng của công nhân nhà máy B sau khi được sắp xếp theo thứ tự không giảm tạo thành mẫu:
2; 8; 9; 9; 9; 9; 9; 10; 11.
Số trung bình mức lương hàng tháng của công nhân nhà máy B là:
(2 + 8 + 9 . 5 + 10 + 11) ≈ 8,4.
Giá trị 9 xuất hiện nhiều nhất trong mẫu số liệu nên mốt của mẫu số liệu là 9.
Cỡ mẫu bằng 9 nên tứ phân vị thứ hai là Q2 = 9.
Tứ phân vị thứ nhất là trung vị của mẫu 2; 8; 9; 9 là Q1 = (8 + 9) = 8,5.
Tứ phân vị thứ ba là trung vị của mẫu 9; 9; 10; 11 là Q3 = (9 + 10) = 9,5.
Phương sai của mẫu số liệu trên là:
(22 + 82 + 5 . 92 + 102 + 112) - 8,42 ≈ 6,55.
Độ lệch chuẩn của mẫu số liệu trên là: ≈ 2,56.
b) Tại nhà máy A ta có Q3 + 1,5 = 5,5 + 1,5 . (5,5 - 4) = 7,75; Q1 - 1,5 = 4 - 1,5 . (5,5 - 4) = 1,75.
Do đó giá trị ngoại lệ của mẫu số liệu mức lương hàng tháng của công nhân nhà máy A là 47.
Tại nhà máy B ta có Q3 + 1,5 = 9,5 + 1,5 . (9,5 - 8,5) = 11; Q1 - 1,5 = 8,5 - 1,5 . (9,5 - 8,5) = 7.
Do đó giá trị ngoại lệ của mẫu số liệu mức lương hàng tháng của công nhân nhà máy B là 2.
Độ lệch chuẩn của mẫu số liệu mức lương hàng thàng của công nhân nhà máy B nhỏ hơn nhà máy A nên công nhân nhà máy B có mức lương cao hơn.
Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Dùng bảng tính để tính các số đặc trưng của mẫu số liệu thống kê
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Soạn văn lớp 10 (ngắn nhất) – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Giải sbt Ngữ văn lớp 10 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Văn mẫu lớp 10 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 10 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Giải sbt Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 10 Friends Global đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 Friends Global
- Giải sgk Vật lí 10 – Chân trời sáng tạo
- Giải sbt Vật lí 10 – Chân trời sáng tạo
- Lý thuyết Vật lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Vật lí 10 – Chân trời sáng tạo
- Giải sgk Hóa học 10 – Chân trời sáng tạo
- Lý thuyết Hóa học 10 – Chân trời sáng tạo
- Giải sbt Hóa học 10 – Chân trời sáng tạo
- Giải Chuyên đề Hóa học 10 – Chân trời sáng tạo
- Giải sgk Sinh học 10 – Chân trời sáng tạo
- Giải sbt Sinh học 10 – Chân trời sáng tạo
- Lý thuyết Sinh học 10 – Chân trời sáng tạo
- Giải Chuyên đề Sinh học 10 – Chân trời sáng tạo
- Giải sgk Lịch sử 10 – Chân trời sáng tạo
- Giải sbt Lịch sử 10 – Chân trời sáng tạo
- Giải Chuyên đề Lịch sử 10 – Chân trời sáng tạo
- Lý thuyết Lịch sử 10 – Chân trời sáng tạo
- Giải sgk Địa lí 10 – Chân trời sáng tạo
- Lý thuyết Địa Lí 10 - Chân trời sáng tạo
- Giải sbt Địa lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Địa lí 10 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải Chuyên đề Kinh tế và pháp luật 10 – Chân trời sáng tạo
- Lý thuyết KTPL 10 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 10 – Chân trời sáng tạo