Giải Toán 10 (Chân trời sáng tạo) Bài tập cuối chương 7
Với giải bài tập Toán lớp 10 Bài tập cuối chương 7 sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 Bài tập cuối chương 7.
Giải bài tập Toán 10 Bài tập cuối chương 7
Bài 1 trang 18 Toán lớp 10 Tập 2: Xét dấu của các tam thức bậc hai sau:
Lời giải:
a) Tam thức bậc hai f(x) = 6x2 + 41x + 44 có ∆ = 412 – 4.6.44 = 625 > 0 và a = 6 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = và x2 = .
Khi đó ta có bảng xét dấu sau:
Vậy f(x) âm khi x thuộc khoảng , f(x) dương khi x thuộc hai khoảng và .
b) Tam thức bậc hai g(x) = - 3x2 + x – 1 có ∆ = 12 – 4.(-3).(-1) = -11 < 0 và a = -3 < 0. Do đó g(x) vô nghiệm. Khi đó ta có bảng xét dấu sau:
Vậy g(x) âm với mọi x ∈ ℝ.
c) Tam thức bậc hai h(x) = 9x2 + 12x + 4 có ∆ = 122 – 4.9.4 = 0 và a = 9 > 0. Do đó h(x) có nghiệm kép x1 = x2 = .
Khi đó ta có bảng xét dấu sau:
Vậy h(x) dương với mọi x ≠ .
Bài 2 trang 18 Toán lớp 10 Tập 2: Giải các bất phương trình sau:
c) 3x2 – 4x + 7 > x2 + 2x + 1;
Lời giải:
a) Tam thức bậc hai f(x) = 7x2 – 19x – 6 có a = 7 > 0 và ∆ = 192 – 4.7.(-6) = 529 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 3 và x2 = .
Suy ra f(x) dương khi x thuộc khoảng và (3; +∞), f(x) âm khi x thuộc khoảng và f(x) = 0 khi x = 3 và x = .
Vậy bất phương trình đã cho có tập nghiệm là S = ∪ [3; +∞).
b) Tam thức bậc hai g(x) = – 6x2 + 11x – 10 có a = - 6 < 0 và ∆ = 112 – 4.(-6).(-10) = -119 < 0. Do đó g(x) vô nghiệm.
Suy ra g(x) luôn âm với mọi x thuộc ℝ
Vậy bất phương trình đã cho có tập nghiệm là S = .
c) Ta có: 3x2 – 4x + 7 > x2 + 2x + 1
⇔ 2x2 – 6x + 6 > 0
Tam thức bậc hai h(x) = 2x2 – 6x + 6 có a = 2 > 0 và ∆’ = 32 – 2.6 = - 3 < 0. Do đó h(x) có vô nghiệm.
Suy ra h(x) dương với mọi x thuộc ℝ.
Vậy bất phương trình đã cho có tập nghiệm S = ℝ.
d) Ta có tam thức bậc hai k(x) = x2 – 10x + 25 có a = 1 > 0 và ∆’ = 52 – 25 = 0. Do đó k(x) có nghiệm kép x1 = x2 = 5.
Suy ra f(x) dương khi x ≠ 5 và f(x) = 0 khi x = 5.
Vậy bất phương trình đã cho có tập nghiệm là S = {5}.
Lời giải:
a) Quan sát đồ thị ta thấy:
Với x thuộc hai khoảng (-∞; -2) và thì đồ thị hàm số nằm phía trên trục hoành. Do đó f(x) > 0 khi x ∈ (-∞; -2) ∪ .
Với x thuộc thì đồ thị hàm số nằm phía dưới trục hoành. Do đó f(x) < 0 khi x ∈ .
Đồ thị hàm số cắt trục hoành tại hai điểm có hoành độ x = - 2 và x = .
Vậy bất phương trình có tập nghiệm là S = .
b) Quan sát hình vẽ ta thấy:
Đồ thị hàm số nằm hoàn toàn phía dưới trục hoành với mọi giá trị của x. Do đó f(x) < 0 với mọi x.
Vậy bất phương trình đã cho vô nghiệm.
Bài 4 trang 18 Toán lớp 10 Tập 2: Giải các phương trình sau:
Lời giải:
a)
⇒ x2 – 7x = - 9x2 – 8x + 3
⇒ 10x2 + x – 3 = 0
⇒ x = và x =
Thay lần lượt hai giá trị vào phương trình đã cho ta thấy chỉ có giá trị x = thỏa mãn.
Vậy tập nghiệm của phương trình đã cho là S = .
b)
⇒
⇒ x2 + x + 8 = x2 + 4x + 1
⇒ 3x = 7
⇒ x =
Thay x = vào phương trình đã cho ta thấy thỏa mãn.
Vậy tập nghiệm của phương trình là S = .
c)
⇒ 4x2 + x – 1 = x2 + 2x + 1
⇒ 3x2 – x – 2 = 0
⇒ x = 1 và x =
Thay lần lượt các giá trị của x vào phương trình đã cho ta thấy cả hai giá trị đều thỏa mãn.
Vậy tập nghiệm của phương trình là S = .
d)
⇒ 2x2 – 10x – 29 = x – 8
⇒ 2x2 – 11x – 21 = 0
⇒ x = 7 và x =
Thay lần lượt hai giá trị này vào phương trình đã cho ta thấy cả hai giá trị đều không thỏa mãn.
Vậy tập nghiệm của phương trình là S = .
Lời giải:
Không mất tính tổng quát giả sử tam giác cần xét là tam giác vuông tại A có độ dài cạnh AC ngắn hơn cạnh huyền BC 8cm.
Đặt BC = x (cm)
Khi đó AC = x – 8 (cm)
Xét tam giác ABC vuông tại A, có:
BC2 = AB2 + AC2 (định lí Py – ta – go)
⇔ x2 = AB2 + (x – 8)2
⇔ AB2 = x2 – (x – 8)2
⇔ AB2 = x2 – (x2 – 16x + 64)
⇔ AB2 = 16x – 64
⇔ AB = (cm)
Chu vi tam giác ABC là: x + x – 8 + = 2x – 8 + (cm)
Mà chu vi tam giác bằng 30cm nên có phương trình 2x – 8 + = 30
⇒ = 38 – 2x
⇒ 16x – 64 = 1 444 – 152x + 4x2
⇒ 4x2 – 168x + 1 508 = 0
⇒ x2 – 42x + 377 = 0
⇒ x = 29 và x = 13
Thay lần lượt vào phương trình đã cho ta thấy chỉ có x = 13 thỏa mãn.
Vậy độ dài cạnh huyền bằng 13cm thì tam giác thỏa mãn điều kiện đầu bài.
Lời giải:
Quả bóng nằm ở độ cao trên 40m nghĩa là h(t) > 40 hay - 4,9t2 + 30t + 2 > 40
⇔ - 4,9t2 + 30t – 38 > 0
Tam thức bậc hai f(t) = - 4,9t2 + 30t – 38, có a = -4,9 < 0 và ∆’ = 152 – (-4,9).(-38) = > 0. Do đó f(t) có hai nghiệm phân biệt t1 ≈ 4,3 và t2 ≈ 1,8.
Khi đó ta có bảng xét dấu:
Suy ra f(t) dương khi t thuộc khoảng (1,8; 4,3).
Vậy quả bóng nằm ở độ cao trên 40m trong 4,3 – 1,8 = 2,5 s.
Tính khoảng thời gian cá heo ở trên không.
Lời giải:
Đặt hệ trục tọa độ như hình vẽ với Ot biểu diễn thời gian (giây) là trục trùng với mặt nước, trục h(t) biểu diễn độ cao (mét), độ cao h(t) = - 4,9t2 + 9,6t là hàm bậc hai được biểu diễn bởi đường cong parabol màu xanh trên hình vẽ.
Khoảng thời gian cá heo ở trên không tính từ khi cá heo rời khỏi mặt nước nên chính là phần đồ thị nằm trên trục Ot hay - 4,9t2 + 9,6t > 0.
Tam thức bậc hai h(t) = - 4,9t2 + 9,6t có a = -4,9 < 0 và ∆ = 9,62 – 4.(-4,9).0 = 92,16 > 0. Do đó h(t) có hai nghiệm phân biệt t1 = 0 và t2 =
Suy ra h(t) dương khi t thuộc khoảng .
Do đó h(t) > 0 khi t ∈ .
Vậy khoảng thời gian cá heo ở trên không là giây.
Lời giải:
Ta có 15 triệu = 15 000 (nghìn đồng)
Lợi nhuận trung bình không dưới 15 triệu nghĩa là p(x) = -30x2 + 2 100x – 15 000 ≥ 15 000
⇔ -30x2 + 2 100x – 30 000 ≥ 0
⇔ -x2 + 70x – 1 000 ≥ 0
Tam thức bậc hai f(x) = -x2 + 70x – 1 000 có a = -1 < 0 và ∆ = 702 – 4.(-1).(-1 000) = 900 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 50 và x2 = 20.
Suy ra f(x) dương khi x thuộc khoảng (20; 50).
Do đó bất phương trình f(x) ≥ 0 với x thuộc [20; 50].
Vậy để lợi nhuận trung bình không dưới 15 triệu một tháng thì giá bán trung bình của các món ăn cần có giá từ 20 nghìn đồng đến 50 nghìn đồng.
Lời giải:
Để quả bóng có thể ném được qua lưới cao 2m nghĩa là -0,03x2 + 0,4x + 1,5 > 2
⇔ -0,03x2 + 0,4x + 1,5 – 2 > 0
⇔ -0,03x2 + 0,4x – 0,5 > 0
Tam thức bậc hai f(x) = -0,03x2 + 0,4x – 0,5 có a = -0,03 < 0 và ∆ = 0,42 – 4.(-0.03).(-0,5) = 0,34 > 0. Do đó f(x) có hai nghiệm phân biệt x1 ≈ 11,9 và x2 ≈ 1,4.
Suy ra f(x) dương khi x thuộc khoảng (1,4; 11,9).
Vậy để quả bóng có thể ném được qua lưới cao 2m thì người đứng cách lưới ít nhất 1,4m và nhiều nhất là 11,9m.
Lý thuyết Toán 10 Bài tập cuối chương 7 - Chân trời sáng tạo
1. Tam thức bậc hai
1.1. Khái niệm tam thức bậc hai và dấu của tam thức bậc hai tại một điểm
– Đa thức bậc hai f(x) = ax2 + bx + c với a, b, c là các hệ số, a ≠ 0 và x là biến số được gọi là tam thức bậc hai.
Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0). Khi thay x bằng giá trị x0 vào f(x), ta được gọi là giá trị của tam thức bậc hai tại x0.
• Nếu f(x0) > 0 thì ta nói f(x) dương tại x0.
• Nếu f(x0) < 0 thì ta nói f(x) âm tại x0.
• Nếu f(x) dương (âm) tại mọi điểm x thuộc một khoảng hoặc một đoạn thì ta nói f(x) dương (âm) trên khoảng hoặc đoạn đó.
Ví dụ: Biểu thức nào sau đây là tam thức bậc hai? Nếu là tam thức bậc hai, hãy xét dấu của nó tại x = 3.
a) f(x) = x2 + 2x4 – 2;
b) f(x) = –x2 + 2x – 3;
c) f(x) = 3x2 – x.
Hướng dẫn giải
a) Biểu thức f(x) = x2 + 2x4 – 2 không phải là tam thức bậc hai vì có chứa x4.
b) Biểu thức f(x) = –x2 + 2x – 3 là tam thức bậc hai với a = –1, b = 2 và c = –3.
Khi x = 3 ta có:
f(3) = –32 + 2.3 – 3 = = –9 + 6 – 3 = –6 < 0.
Do đó f(x) âm tại x = 3.
c) Biểu thức f(x) = 3x2 – x là tam thức bậc hai với a = 3, b = và c = 0.
Khi x = 3 ta có:
f(3) = 3.32 – .3 = 27 – 3 > 0
Do đó f(x) dương tại x = 3.
1.2. Biệt thức (biệt thức thu gọn) và nghiệm của tam thức bậc hai
– Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0). Khi đó:
• Nghiệm của phương trình bậc hai ax2 + bx + c là nghiệm của f(x).
• Biểu thức ∆ = b2 – 4ac và lần lượt là biệt thức và biệt thức thu gọn của f(x).
Ví dụ: Tìm biệt thức (hoặc biệt thức thu gọn) và nghiệm (nếu có) của các tam thức bậc hai sau:
a) f(x) = x2 + 2x – 5;
b) f(x) = = –3x2 + 18x – 27;
c) f(x) = x + x2 + 1.
Hướng dẫn giải
a) f(x) = x2 + 2x – 5 có ∆' = 12 – 1.(–5) = 6 > 0.
Do đó f(x) có hai nghiệm phân biệt là:
và
Vậy tam thức bậc hai đã cho có hai nghiệm là và
b) f(x) = –3x2 + 18x – 27
f(x) có ∆' = 92 – (‒3).(–27) = 0
Do đó f(x) có nghiệm kép là
Vậy tam thức bậc hai đã cho có nghiệm là x = 3.
c) f(x) = x + x2 + 1 = x2 + x + 1.
f(x) có ∆ = 12 – 4.1.1 = –3 < 0.
Do đó f(x) vô nghiệm.
Vậy tam thức bậc hai đã cho vô nghiệm.
2. Định lí về dấu của tam thức bậc hai
Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0).
+ Nếu ∆ < 0 thì f(x) cùng dấu với a với mọi giá trị x.
+ Nếu ∆ = 0 và là nghiệm kép của f(x) thì f(x) cùng dấu với a với mọi x khác x0.
+ Nếu ∆ > 0 và x1, x2 là hai nghiệm của f(x) (x1 < x2) thì:
• f(x) trái dấu với a với mọi x trong khoảng (x1; x2);
• f(x) cùng dấu với a với mọi x thuộc hai khoảng (–∞; x1), (x2; +∞).
Chú ý:
+ Để xét dấu tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0), ta thực hiện các bước sau:
Bước 1: Tính và xác định dấu của biệt thức ∆;
Bước 2: Xác định nghiệm của f(x) (nếu có);
Bước 3: Xác định dấu của hệ số a;
Bước 4: Xác định dấu của f(x).
+ Khi xét dấu của tam thức bậc hai, ta có thể dùng biệt thức thu gọn ∆' thay cho biệt thức ∆.
Ví dụ: Xét dấu của các tam thức bậc hai sau:
a) f(x) = 3x2 + 6x – 9;
b) f(x) = –2x2 + 8x + 10;
c) f(x) = 4x2 + 8x + 4;
d) f(x) = –3x2 + 2x – 1.
Hướng dẫn giải
a) f(x) = 3x2 + 6x – 9
f(x) có a = 3 > 0 và ∆' = 32 – 3.(–9) = 36 > 0.
Khi đó f(x) có hai nghiệm phân biệt là:
và
Ta có bảng xét dấu của f(x) như sau:
x |
–∞ |
|
–3 |
|
1 |
|
+∞ |
f(x) |
|
+ |
0 |
– |
0 |
+ |
|
Vậy, f(x) dương trong khoảng (–∞; –3) và (1; +∞);
f(x) âm trong khoảng (–3; 1).
b) f(x) = –2x2 + 8x + 10
f(x) có a = –2 < 0 và ∆' = 42 – (–2).10 = 36 > 0.
Khi đó f(x) có hai nghiệm phân biệt là:
và
Ta có bảng xét dấu của f(x) như sau:
x |
–∞ |
|
–1 |
|
5 |
|
+∞ |
f(x) |
|
– |
0 |
+ |
0 |
– |
|
Vậy, f(x) âm trong khoảng (–∞; –1) và (5; +∞);
f(x) dương trong khoảng (–1; 5).
c) f(x) = 4x2 + 8x + 4
f(x) có a = 4 > 0 và ∆' = 42 – 4.4 = 0.
Khi đó f(x) có nghiệm kép là
Vậy, f(x) dương với mọi x ≠ –1.
d) f(x) = –3x2 + 2x – 1.
f(x) có a = –3 < 0 và ∆' = 12 – (–3).(–1) = –2 < 0.
Vậy f(x) âm với mọi x ∈ ℝ.
3. Giải bất phương trình bậc hai một ẩn
– Bất phương trình bậc hai một ẩn x là bất phương trình có một trong các dạng:
ax2 + bx + c ≤ 0, ax2 + bx + c < 0, ax2 + bx + c ≥ 0, ax2 + bx + c > 0, với a ≠ 0.
Nghiệm của bất phương trình bậc hai là các giá trị của biến x mà khi thay vào bất phương trình ta được bất đẳng thức đúng.
Ví dụ: Bất phương trình nào sau đây là bất phương trình bậc hai một ẩn? Nếu là bất phương trình bậc hai một ẩn, x = –2 và x = 3 có phải là nghiệm của bất phương trình đó hay không?
a) 2x2 – 7x – 15 < 0;
b) 3 – 2x2 + x3 > 0;
c) x2 – 4x + 3 ≥ 0.
Hướng dẫn giải
a) 2x2 – 7x – 15 < 0
Bất phương trình trên là bất phương trình bậc hai một ẩn dạng ax2 + bx + c < 0 với a = 2, b = –7, c = –15.
• Với x = –2 thay vào bất phương trình ta có:
2.(–2)2 – 7.(–2) – 15 < 0
7 < 0. Đây là bất đẳng thức sai.
Do đó x = –2 không là nghiệm của bất phương trình.
• Với x = 3 thay vào bất phương trình ta có:
2.32 – 7.3 – 15 < 0
–18 < 0. Đây là bất đẳng thức đúng.
Do đó x = 3 là nghiệm của bất phương trình.
b) 3 – 2x2 + x3 > 0
Bất phương trình trên không là bất phương trình bậc hai một ẩn vì có chứa x3.
c) x2 – 4x + 3 ≥ 0.
Bất phương trình trên là bất phương trình bậc hai một ẩn dạng ax2 + bx + c ≥ 0 với a = 1, b = –4, c = 3.
• Với x = –2 thay vào bất phương trình ta có:
(–2)2 – 4.(–2) + 3 ≥ 0 15 ≥ 0. Đây là bất đẳng thức đúng.
Do đó x = –2 là nghiệm của bất phương trình.
• Với x = 3 thay vào bất phương trình ta có:
32 – 4.3 + 3 ≥ 0 0 ≥ 0. Đây là bất đẳng thức đúng.
Do đó x = 3 là nghiệm của bất phương trình.
– Giải bất phương trình bậc hai là tìm tập hợp các nghiệm của bất phương trình đó.
Ta có thể giải bất phương trình bậc hai bằng cách xét dấu của tam thức bậc hai tương ứng.
Ví dụ: Giải các bất phương trình sau:
a) x2 – 3x + 2 < 0;
b) –2x2 + 3x – 7 ≥ 0.
Hướng dẫn giải
a) x2 – 3x + 2 < 0
Xét tam thức bậc hai f(x) = x2 – 3x + 2
Ta có ∆ = (–3)2 – 4.1.2 = 1 > 0
Do đó f(x) có hai nghiệm phân biệt là x1 = 1 và x2 = 2.
Vì a = 1 > 0 nên ta có bảng xét dấu của f(x) như sau:
x |
–∞ |
|
1 |
|
2 |
|
+∞ |
f(x) |
|
+ |
0 |
– |
0 |
+ |
|
Dựa vào bảng xét dấu f(x) < 0 x ∈ (1; 2).
Vậy bất phương trình đã cho có tập nghiệm là (1; 2).
b) –2x2 + 3x – 7 ≥ 0.
Xét tam thức bậc hai f(x) = –2x2 + 3x – 7
Ta có ∆ = 32 – 4.(–2).(–7) = –47 < 0.
Mặt khác a = –2 < 0
Do đó f(x) < 0 với mọi x.
Khi đó không có giá trị nào của x thỏa mãn f(x) ≥ 0.
Vậy bất phương trình đã cho vô nghiệm.
4. Phương trình dạng
Để giải phương trình ta làm như sau:
Bước 1: Bình phương hai vế của phương trình để được phương trình:
ax2 + bx + c = dx2 + ex + f
Bước 2: Giải phương trình nhận được ở Bước 1.
Bước 3: Thử lại xem các giá trị x tìm được ở Bước 2 có thoả mãn phương trình đã cho hay không và kết luận nghiệm.
Ví dụ: Giải phương trình sau:
Hướng dẫn giải
(1)
Bình phương hai vế của phương trình (1) ta có:
x2 + 3x – 2 = x + 1
x2 + 2x – 3 = 0
x = 1 hoặc x = –3.
• Với x = 1 thay vào phương trình (1) ta được:
(đúng)
Do đó x = 1 là nghiệm của phương trình (1).
• Với x = –3 ta thấy x + 1 = –3 +1 = –2 < 0 nên không tồn tại
Do đó x = –3 không là nghiệm của phương trình (1).
Vậy phương trình đã cho có nghiệm x = 1.
5. Phương trình dạng
Để giải phương trình ta làm như sau:
Bước 1: Bình phương hai vế của phương trình để được phương trình:
ax2 + bx + c = (dx +e)2
Bước 2: Giải phương trình nhận được ở Bước 1.
Bước 3: Thử lại xem các giá trị x tìm được ở Bước 2 có thoả mãn phương trình đã cho hay không và kết luận nghiệm.
Ví dụ: Giải phương trình sau:
Hướng dẫn giải
(2)
Bình phương hai vế phương trình (2) ta có:
4 + 2x – x2 = (x – 2)2
4 + 2x – x2 = x2 – 4x + 4
2x2 – 6x = 0
2x(x – 3) = 0
x = 0 hoặc x = 3
• Với x = 0 thay vào phương trình (2) ta được:
2 = –2 (vô lí)
Do đó x = 0 không là nghiệm của phương trình (2).
• Với x = 3 thay vào phương trình (2) ta được:
1 = 1 (đúng)
Do đó x = 3 là nghiệm của phương trình (2).
Vậy phương trình đã cho có nghiệm x = 3.
Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Quy tắc cộng và quy tắc nhân
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Soạn văn lớp 10 (ngắn nhất) – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Giải sbt Ngữ văn lớp 10 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Văn mẫu lớp 10 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 10 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Giải sbt Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 10 Friends Global đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 Friends Global
- Giải sgk Vật lí 10 – Chân trời sáng tạo
- Giải sbt Vật lí 10 – Chân trời sáng tạo
- Lý thuyết Vật lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Vật lí 10 – Chân trời sáng tạo
- Giải sgk Hóa học 10 – Chân trời sáng tạo
- Lý thuyết Hóa học 10 – Chân trời sáng tạo
- Giải sbt Hóa học 10 – Chân trời sáng tạo
- Giải Chuyên đề Hóa học 10 – Chân trời sáng tạo
- Giải sgk Sinh học 10 – Chân trời sáng tạo
- Giải sbt Sinh học 10 – Chân trời sáng tạo
- Lý thuyết Sinh học 10 – Chân trời sáng tạo
- Giải Chuyên đề Sinh học 10 – Chân trời sáng tạo
- Giải sgk Lịch sử 10 – Chân trời sáng tạo
- Giải sbt Lịch sử 10 – Chân trời sáng tạo
- Giải Chuyên đề Lịch sử 10 – Chân trời sáng tạo
- Lý thuyết Lịch sử 10 – Chân trời sáng tạo
- Giải sgk Địa lí 10 – Chân trời sáng tạo
- Lý thuyết Địa Lí 10 - Chân trời sáng tạo
- Giải sbt Địa lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Địa lí 10 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải Chuyên đề Kinh tế và pháp luật 10 – Chân trời sáng tạo
- Lý thuyết KTPL 10 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 10 – Chân trời sáng tạo