Giải Toán 10 trang 18 Tập 2 Chân trời sáng tạo
Với giải bài tập Toán lớp 10 trang 18 Tập 2 trong Bài tập cuối chương 7 sách Chân trời sáng tạo hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Toán 10 trang 18 Tập 2.
Giải Toán 10 trang 18 Tập 2
Bài 1 trang 18 Toán lớp 10 Tập 2: Xét dấu của các tam thức bậc hai sau:
Lời giải:
a) Tam thức bậc hai f(x) = 6x2 + 41x + 44 có ∆ = 412 – 4.6.44 = 625 > 0 và a = 6 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = và x2 = .
Khi đó ta có bảng xét dấu sau:
Vậy f(x) âm khi x thuộc khoảng , f(x) dương khi x thuộc hai khoảng và .
b) Tam thức bậc hai g(x) = - 3x2 + x – 1 có ∆ = 12 – 4.(-3).(-1) = -11 < 0 và a = -3 < 0. Do đó g(x) vô nghiệm. Khi đó ta có bảng xét dấu sau:
Vậy g(x) âm với mọi x ∈ ℝ.
c) Tam thức bậc hai h(x) = 9x2 + 12x + 4 có ∆ = 122 – 4.9.4 = 0 và a = 9 > 0. Do đó h(x) có nghiệm kép x1 = x2 = .
Khi đó ta có bảng xét dấu sau:
Vậy h(x) dương với mọi x ≠ .
Bài 2 trang 18 Toán lớp 10 Tập 2: Giải các bất phương trình sau:
c) 3x2 – 4x + 7 > x2 + 2x + 1;
Lời giải:
a) Tam thức bậc hai f(x) = 7x2 – 19x – 6 có a = 7 > 0 và ∆ = 192 – 4.7.(-6) = 529 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 3 và x2 = .
Suy ra f(x) dương khi x thuộc khoảng và (3; +∞), f(x) âm khi x thuộc khoảng và f(x) = 0 khi x = 3 và x = .
Vậy bất phương trình đã cho có tập nghiệm là S = ∪ [3; +∞).
b) Tam thức bậc hai g(x) = – 6x2 + 11x – 10 có a = - 6 < 0 và ∆ = 112 – 4.(-6).(-10) = -119 < 0. Do đó g(x) vô nghiệm.
Suy ra g(x) luôn âm với mọi x thuộc ℝ
Vậy bất phương trình đã cho có tập nghiệm là S = .
c) Ta có: 3x2 – 4x + 7 > x2 + 2x + 1
⇔ 2x2 – 6x + 6 > 0
Tam thức bậc hai h(x) = 2x2 – 6x + 6 có a = 2 > 0 và ∆’ = 32 – 2.6 = - 3 < 0. Do đó h(x) có vô nghiệm.
Suy ra h(x) dương với mọi x thuộc ℝ.
Vậy bất phương trình đã cho có tập nghiệm S = ℝ.
d) Ta có tam thức bậc hai k(x) = x2 – 10x + 25 có a = 1 > 0 và ∆’ = 52 – 25 = 0. Do đó k(x) có nghiệm kép x1 = x2 = 5.
Suy ra f(x) dương khi x ≠ 5 và f(x) = 0 khi x = 5.
Vậy bất phương trình đã cho có tập nghiệm là S = {5}.
Lời giải:
a) Quan sát đồ thị ta thấy:
Với x thuộc hai khoảng (-∞; -2) và thì đồ thị hàm số nằm phía trên trục hoành. Do đó f(x) > 0 khi x ∈ (-∞; -2) ∪ .
Với x thuộc thì đồ thị hàm số nằm phía dưới trục hoành. Do đó f(x) < 0 khi x ∈ .
Đồ thị hàm số cắt trục hoành tại hai điểm có hoành độ x = - 2 và x = .
Vậy bất phương trình có tập nghiệm là S = .
b) Quan sát hình vẽ ta thấy:
Đồ thị hàm số nằm hoàn toàn phía dưới trục hoành với mọi giá trị của x. Do đó f(x) < 0 với mọi x.
Vậy bất phương trình đã cho vô nghiệm.
Bài 4 trang 18 Toán lớp 10 Tập 2: Giải các phương trình sau:
Lời giải:
a)
⇒ x2 – 7x = - 9x2 – 8x + 3
⇒ 10x2 + x – 3 = 0
⇒ x = và x =
Thay lần lượt hai giá trị vào phương trình đã cho ta thấy chỉ có giá trị x = thỏa mãn.
Vậy tập nghiệm của phương trình đã cho là S = .
b)
⇒
⇒ x2 + x + 8 = x2 + 4x + 1
⇒ 3x = 7
⇒ x =
Thay x = vào phương trình đã cho ta thấy thỏa mãn.
Vậy tập nghiệm của phương trình là S = .
c)
⇒ 4x2 + x – 1 = x2 + 2x + 1
⇒ 3x2 – x – 2 = 0
⇒ x = 1 và x =
Thay lần lượt các giá trị của x vào phương trình đã cho ta thấy cả hai giá trị đều thỏa mãn.
Vậy tập nghiệm của phương trình là S = .
d)
⇒ 2x2 – 10x – 29 = x – 8
⇒ 2x2 – 11x – 21 = 0
⇒ x = 7 và x =
Thay lần lượt hai giá trị này vào phương trình đã cho ta thấy cả hai giá trị đều không thỏa mãn.
Vậy tập nghiệm của phương trình là S = .
Lời giải:
Không mất tính tổng quát giả sử tam giác cần xét là tam giác vuông tại A có độ dài cạnh AC ngắn hơn cạnh huyền BC 8cm.
Đặt BC = x (cm)
Khi đó AC = x – 8 (cm)
Xét tam giác ABC vuông tại A, có:
BC2 = AB2 + AC2 (định lí Py – ta – go)
⇔ x2 = AB2 + (x – 8)2
⇔ AB2 = x2 – (x – 8)2
⇔ AB2 = x2 – (x2 – 16x + 64)
⇔ AB2 = 16x – 64
⇔ AB = (cm)
Chu vi tam giác ABC là: x + x – 8 + = 2x – 8 + (cm)
Mà chu vi tam giác bằng 30cm nên có phương trình 2x – 8 + = 30
⇒ = 38 – 2x
⇒ 16x – 64 = 1 444 – 152x + 4x2
⇒ 4x2 – 168x + 1 508 = 0
⇒ x2 – 42x + 377 = 0
⇒ x = 29 và x = 13
Thay lần lượt vào phương trình đã cho ta thấy chỉ có x = 13 thỏa mãn.
Vậy độ dài cạnh huyền bằng 13cm thì tam giác thỏa mãn điều kiện đầu bài.
Lời giải:
Quả bóng nằm ở độ cao trên 40m nghĩa là h(t) > 40 hay - 4,9t2 + 30t + 2 > 40
⇔ - 4,9t2 + 30t – 38 > 0
Tam thức bậc hai f(t) = - 4,9t2 + 30t – 38, có a = -4,9 < 0 và ∆’ = 152 – (-4,9).(-38) = > 0. Do đó f(t) có hai nghiệm phân biệt t1 ≈ 4,3 và t2 ≈ 1,8.
Khi đó ta có bảng xét dấu:
Suy ra f(t) dương khi t thuộc khoảng (1,8; 4,3).
Vậy quả bóng nằm ở độ cao trên 40m trong 4,3 – 1,8 = 2,5 s.
Tính khoảng thời gian cá heo ở trên không.
Lời giải:
Đặt hệ trục tọa độ như hình vẽ với Ot biểu diễn thời gian (giây) là trục trùng với mặt nước, trục h(t) biểu diễn độ cao (mét), độ cao h(t) = - 4,9t2 + 9,6t là hàm bậc hai được biểu diễn bởi đường cong parabol màu xanh trên hình vẽ.
Khoảng thời gian cá heo ở trên không tính từ khi cá heo rời khỏi mặt nước nên chính là phần đồ thị nằm trên trục Ot hay - 4,9t2 + 9,6t > 0.
Tam thức bậc hai h(t) = - 4,9t2 + 9,6t có a = -4,9 < 0 và ∆ = 9,62 – 4.(-4,9).0 = 92,16 > 0. Do đó h(t) có hai nghiệm phân biệt t1 = 0 và t2 =
Suy ra h(t) dương khi t thuộc khoảng .
Do đó h(t) > 0 khi t ∈ .
Vậy khoảng thời gian cá heo ở trên không là giây.
Lời giải:
Ta có 15 triệu = 15 000 (nghìn đồng)
Lợi nhuận trung bình không dưới 15 triệu nghĩa là p(x) = -30x2 + 2 100x – 15 000 ≥ 15 000
⇔ -30x2 + 2 100x – 30 000 ≥ 0
⇔ -x2 + 70x – 1 000 ≥ 0
Tam thức bậc hai f(x) = -x2 + 70x – 1 000 có a = -1 < 0 và ∆ = 702 – 4.(-1).(-1 000) = 900 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 50 và x2 = 20.
Suy ra f(x) dương khi x thuộc khoảng (20; 50).
Do đó bất phương trình f(x) ≥ 0 với x thuộc [20; 50].
Vậy để lợi nhuận trung bình không dưới 15 triệu một tháng thì giá bán trung bình của các món ăn cần có giá từ 20 nghìn đồng đến 50 nghìn đồng.
Lời giải:
Để quả bóng có thể ném được qua lưới cao 2m nghĩa là -0,03x2 + 0,4x + 1,5 > 2
⇔ -0,03x2 + 0,4x + 1,5 – 2 > 0
⇔ -0,03x2 + 0,4x – 0,5 > 0
Tam thức bậc hai f(x) = -0,03x2 + 0,4x – 0,5 có a = -0,03 < 0 và ∆ = 0,42 – 4.(-0.03).(-0,5) = 0,34 > 0. Do đó f(x) có hai nghiệm phân biệt x1 ≈ 11,9 và x2 ≈ 1,4.
Suy ra f(x) dương khi x thuộc khoảng (1,4; 11,9).
Vậy để quả bóng có thể ném được qua lưới cao 2m thì người đứng cách lưới ít nhất 1,4m và nhiều nhất là 11,9m.
Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm lời giải bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Quy tắc cộng và quy tắc nhân
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Soạn văn lớp 10 (ngắn nhất) – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Giải sbt Ngữ văn lớp 10 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Văn mẫu lớp 10 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 10 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Giải sbt Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 10 Friends Global đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 Friends Global
- Giải sgk Vật lí 10 – Chân trời sáng tạo
- Giải sbt Vật lí 10 – Chân trời sáng tạo
- Lý thuyết Vật lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Vật lí 10 – Chân trời sáng tạo
- Giải sgk Hóa học 10 – Chân trời sáng tạo
- Lý thuyết Hóa học 10 – Chân trời sáng tạo
- Giải sbt Hóa học 10 – Chân trời sáng tạo
- Giải Chuyên đề Hóa học 10 – Chân trời sáng tạo
- Giải sgk Sinh học 10 – Chân trời sáng tạo
- Giải sbt Sinh học 10 – Chân trời sáng tạo
- Lý thuyết Sinh học 10 – Chân trời sáng tạo
- Giải Chuyên đề Sinh học 10 – Chân trời sáng tạo
- Giải sgk Lịch sử 10 – Chân trời sáng tạo
- Giải sbt Lịch sử 10 – Chân trời sáng tạo
- Giải Chuyên đề Lịch sử 10 – Chân trời sáng tạo
- Lý thuyết Lịch sử 10 – Chân trời sáng tạo
- Giải sgk Địa lí 10 – Chân trời sáng tạo
- Lý thuyết Địa Lí 10 - Chân trời sáng tạo
- Giải sbt Địa lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Địa lí 10 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải Chuyên đề Kinh tế và pháp luật 10 – Chân trời sáng tạo
- Lý thuyết KTPL 10 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 10 – Chân trời sáng tạo