Bài 6 trang 63 Toán 7 Tập 2 | Chân trời sáng tạo Giải Toán lớp 7

Lời giải Bài 6 trang 63 Toán 7 Tập 2 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

1 663 28/02/2023


Giải Toán 7 Chân trời sáng tạo Bài 3: Tam giác cân 

Bài 6 trang 63 Toán 7 Tập 2:

Một khung cửa sổ hình tam giác có thiết kế như Hình 18a được vẽ lại như Hình 18b.

Giải Toán 7 Bài 3 (Chân trời sáng tạo): Tam giác cân (ảnh 1) 

a) Cho biết A^1=42°. Tính số đo của M^1,  B^1,  M^2.

b) Chứng minh MN // BC, MP // AC.

c) Chứng minh bốn tam giác cân AMN, MBP, PMN, NPC bằng nhau.

Lời giải:

a) ∆AMN có AM = AN nên ∆AMN cân tại A.

Suy ra M^1=ANM^.

Xét ∆AMN có: A^1+M^1+ANM^=180° (định lí tổng số đo ba góc của một tam giác)

Suy ra M^1+ANM^=180°A^1.

Hay 2M^1=180°A^1=180°42°=138°.

Do đó M^1=69°.

Ta có: AB = AM + MB; AC = AN + NC.

Mà AM = AN, MB = NC nên AB = AC.

Do đó ∆ABC cân tại A.

Suy ra B^1=C^.

Xét ∆ABC có: A^1+B^1+C^=180° (định lí tổng số đo ba góc của một tam giác)

Suy ra B^1+C^=180°A^1.

Hay 2B^1=180°A^1=180°42°=138°.

Do đó B^1=69°.

∆MBP có MB = MP nên ∆MBP cân tại M.

Suy ra MBP^=MPB^.

Xét ∆MBP có: M^2+B^1+MPB^=180° (định lí tổng số đo ba góc của một tam giác)

Suy ra M^2=180°B^1MPB^.

Hay M^2=180°2B^1=180°2.69°=42°.

Vậy M^1=69°; B^1=69°; M^2=42°.

b) Ta có: M^1=B^1=69°.

M^1 và B^1 ở vị trí đồng vị nên MN // BC.

Lại có: M^2=A^1=42°.

M^2 và A^1 ở vị trí đồng vị nên MP // AC.

c) • Xét ∆AMN và ∆MBP có:

AM = MB (giả thiết).

A^1=M^2 (chứng minh trên).

AN = MP (giả thiết).

Do đó ∆AMN = ∆MBP (c.g.c).

Suy ra MN = BP (hai cạnh tương ứng).

• Xét ∆MBP và ∆PMN có:

MP = PN (giả thiết).

MB = PM (giả thiết).

BP = MN (chứng minh trên).

Do đó ∆MBP = ∆PMN (c.c.c).

• Do MP // AC nên MPN^=PNC^ (hai góc so le trong).

Xét ∆PMN và ∆NPC có:

PM = NP (giả thiết).

MPN^=PNC^ (chứng minh trên).

PN = NC (giả thiết).

Do đó ∆PMN = ∆NPC (c.g.c).

Vậy bốn tam giác cân AMN, MBP, PMN, NPC bằng nhau.

1 663 28/02/2023


Xem thêm các chương trình khác: