Lý thuyết Phân tích đa thức thành nhân tử – Toán lớp 8 Kết nối tri thức

Với lý thuyết Toán lớp 8 Bài 9: Phân tích đa thức thành nhân tử chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 8.

1 1,634 07/12/2023


Lý thuyết Toán 8 Bài 9: Phân tích đa thức thành nhân tử - Kết nối tri thức

Bài giảng Toán 8 Bài 9: Phân tích đa thức thành nhân tử - Kết nối tri thức

A. Lý thuyết Phân tích đa thức thành nhân tử

Phân tích đa thức thành nhân tử:

Phân tích đa thức thành nhân tử (hay thừa số) là biến đổi đa thức đó thành một tích của những đa thức.

Phân tích đa thức thành nhân tử bằng cách đặt nhân tử chung:

Ví dụ: Phân tích đa thức x3+x thành nhân tử: x3+x=x.x2+x=x(x2+1)

Phân tích đa thức thành nhân tử bằng cách nhóm nhân tử:

Ví dụ: Phân tích đa thức xy+3z+xz+3y thành nhân tử:

xy+3z+xz+3y=(xy+xz)+(3z+3y)=x(y+z)+3(z+y)=(x+3)(y+z)

Phân tích đa thức thành nhân tử bằng cách sử dụng hằng đẳng thức như thế nào?

Ví dụ: Phân tích đa thức x28x+16 thành nhân tử: x28x+16=x22.x.4+42=(x4)2

B. Bài tập Phân tích đa thức thành nhân tử

Bài 1. Tìm x, biết:

a) 2x2 + 2x = 0;

b) 3x3 – 3x = 0.

Hướng dẫn giải

a) Ta có: 2x2 + 2x = 2x(x + 1)

Khi đó, 2x2 + 2x = 0 thì 2x(x + 1) = 0.

TH1: 2x = 0, suy ra x = 0.

TH2: x + 1 = 0, suy ra x = – 1.

Vậy x = 0 hoặc x = – 1.

b) Ta có: 3x3 – 3x = 3x(x2 – 1) = 3x(x – 1)(x + 1).

Khi đó 3x3 – 3x = 0 thì 3x(x + 1)(x – 1) = 0.

TH1: 3x = 0, suy ra x = 0.

TH2: x + 1 = 0, suy ra x = – 1.

TH3: x – 1 = 0, suy ra x = 1.

Vậy x = 0 hoặc x = – 1 hoặc x = 1.

Bài 2. Một khu vườn hình vuông có độ dài cạnh bằng 2x (mét). Người ta làm đường đi xung quanh khu vườn, có độ rộng như nhau và bằng y (mét).

a) Viết biểu thức tính diện tích S của đường đi bao quanh mảnh vườn theo x và y.

b) Phân tích S thành nhân tử rồi tính S khi x = 102 m, y = 4 m.

Lý thuyết Toán 8 Kết nối tri thức Lý thuyết Toán 8 Kết nối tri thức Bài 9: Phân tích đa thức thành nhân tử

Hướng dẫn giải

a) Diện tích khu vườn hình vuông là: (2x)2 (m2).

Vì làm đường đi bao quanh khu vườn, mỗi bên có độ rộng y mét nên phần vườn không chứa đường đi là một hình vuông có cạnh là 2x – 2y (m).

Diện tích khu vườn hình vuông sau khi làm đường đi là: (2x – 2y)2 (m2).

Diện tích đường đi bao quanh khu vườn là: S = (2x)2 – (2x – 2y)2 (m2).

b) Ta có:

S = (2x)2 – (2x – 2y)2

= [2x – (2x – 2y)][2x + (2x – 2y)]

= (2x – 2x + 2y)(2x + 2x – 2y)

= 2y(4x – 2y)

= 4y(2x – y).

Thay x = 102 m, y = 4 m vào S ta được:

S = 4.4.(2.102 – 4) = 16.200 = 3 200 m2.

Bài 3. Phân tích các đa thức sau thành nhân tử:

a) 3x2 + xy;

b) 4x3 – x;

c) x2 – 16 + xy – 4y;

d) 8x4 – x.

Hướng dẫn giải

a) 3x2 + xy = x(3x + y);

b) 4x3 – x = x(4x2 – 1) = x[(2x)2 – 12] = x(2x – 1)(2x + 1);

c) x2 – 16 + xy – 4y = (x2 – 16) + (xy – 4y)

= (x – 4)(x + 4) + y(x – 4)

= (x – 4)(x + 4 + y);

d) 8x4 – x = x(8x3 – 1) = x[(2x)3 – 13]

= x(2x – 1)(4x2 + 2x + 1).

Xem thêm tóm tắt lý thuyết Toán lớp 8 sách Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 10: Tứ giác

Lý thuyết Bài 11: Hình thang cân

Lý thuyết Bài 12: Hình bình hành

Lý thuyết Bài 13: Hình chữ nhật

Lý thuyết Bài 14: Hình thoi và hình vuông

1 1,634 07/12/2023


Xem thêm các chương trình khác: