Lý thuyết Mối liên hệ giữa xác suất thực nghiệm với xác suất và ứng dụng – Toán lớp 8 Kết nối tri thức

Với lý thuyết Toán lớp 8 Bài 32: Mối liên hệ giữa xác suất thực nghiệm với xác suất và ứng dụng chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Kết nối tri thức sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 8.

1 944 07/12/2023


Lý thuyết Toán 8 Bài 32: Mối liên hệ giữa xác suất thực nghiệm với xác suất và ứng dụng - Kết nối tri thức

A. Lý thuyết Mối liên hệ giữa xác suất thực nghiệm với xác suất và ứng dụng

1. Xác suất thực nghiệm của một biến cố

Giả sử trong n lần thực nghiệm hoặc n lần theo dõi (quan sát) một hiện tượng ta thấy biến cố E xảy ra k lần. Khi đó xác suất thực nghiệm của biến cố E bằng kn, tức là bằng tỉ số giữa số lần xuất hiện của biến cố E và số lần thực hiện thực nghiệm hoặc theo dõi hiện tượng đó.

Ví dụ: Bạn Nam gieo một con xúc xắc 20 lần. Kết quả thu được như sau:

Số chấm

1

2

3

4

5

6

Số lần

2

4

5

3

2

4

Gọi A là biến cố “Nam gieo được số chấm lớn hơn 3”. Số chấm lớn hơn 3 là 4, 5 và 6 với số lần gieo được lần lượt là 3, 2 và 4. Khi đó số biến cố A xảy ra là: 3 + 2 + 4 = 9 (lần)

Vậy xác suất thực nghiệm của biến cố A là 920.

2. Mối liên hệ giữa xác suất thực nghiệm với xác suất

Xác suất của biến cố E được ước lượng bằng xác suất thực nghiệm của E:

P(E)kn;

Trong đó n là số lần thực nghiệm hay theo dõi một hiện tượng, k là số lần biến cố E xảy ra.

Ví dụ: Trong 240 000 trẻ sơ sinh chào đời người ta có 123 120 bé trai.

Số bé gái chào đời là: 240 000 – 123 120 =116 880

Xác suất của biến cố “Trẻ sơ sinh là bé gái” là: 116880240000=4871000=0,487=48,7%

Vậy xác suất trẻ sơ sinh là bé gái được ước lượng là 48,7%

Sơ đồ tư duy Mối liên hệ giữa xác suất thực nghiệm với xác suất và ứng dụng

Lý thuyết Mối liên hệ giữa xác suất thực nghiệm với xác suất và ứng dụng – Toán lớp 8 Kết nối tri thức (ảnh 1)

B. Bài tập Mối liên hệ giữa xác suất thực nghiệm với xác suất và ứng dụng

Đang cập nhật...

Xem thêm tóm tắt lý thuyết Toán lớp 8 sách Kết nối tri thức hay, chi tiết khác:

Lý thuyết Bài 33: Hai tam giác đồng dạng

Lý thuyết Bài 34: Ba trường hợp đồng dạng của hai tam giác

Lý thuyết Bài 35: Định lí Pythagore và ứng dụng

Lý thuyết Bài 36: Các trường hợp đồng dạng của hai tam giác vuông

Lý thuyết Bài 37: Hình đồng dạng

1 944 07/12/2023


Xem thêm các chương trình khác: