Cho tam giác ABC vuông cân tại A và tam giác MNP có MN = MP = 4 cm

Lời giải Bài 9.43 trang 62 SBT Toán 8 Tập 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong sách bài tập Toán 8.

1 483 05/12/2023


Giải SBT Toán 8 (Kết nối tri thức) Bài 36: Các trường hợp đồng dạng của hai tam giác vuông

Bài 9.43 trang 62 SBT Toán lớp 8 Tập 2: Cho tam giác ABC vuông cân tại A và tam giác MNP có MN = MP = 4 cm và NP = 42 cm. Chứng minh rằng ∆ABC ᔕ ∆MNP.

Lời giải:

Tam giác ABC vuông cân tại A nên .

Vì MN2 + MP2 = NP2 (do 42 + 42 = 422)

Nên tam giác MNP vuông tại M (theo định lí Pythagore đảo).

Mà MN = MP = 4 cm nên tam giác MNP vuông cân tại M.

Do đó, N^=45° .

Xét tam giác ABC vuông ở A và tam giác MNP vuông ở M có:

B^=N^=45°

Do đó, ∆ABC ᔕ ∆MNP (hai góc nhọn bằng nhau).

1 483 05/12/2023


Xem thêm các chương trình khác: