Cho hình vuông ABCD và M, N lần lượt là trung điểm của AB, BC. Gọi O là giao điểm của CM và DN

Lời giải Bài 9.53 trang 64 SBT Toán 8 Tập 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong sách bài tập Toán 8.

1 355 05/12/2023


Giải SBT Toán 8 (Kết nối tri thức) Bài 36: Các trường hợp đồng dạng của hai tam giác vuông

Bài 9.53 trang 64 SBT Toán lớp 8 Tập 2: Cho hình vuông ABCD và M, N lần lượt là trung điểm của AB, BC. Gọi O là giao điểm của CM và DN.

a) Chứng minh rằng CM ⊥ DN.

b) Biết AB = 4 cm, hãy tính diện tích tam giác ONC.

Lời giải:

Cho hình vuông ABCD và M, N lần lượt là trung điểm của AB, BC

a) Vì ABCD là hình vuông nên AB = BC = CD = DA;

DAB^=ABC^=BCD^=CDA^=90° .

Vì M là trung điểm của AB nên AM = MB = 12 AB.

Vì N là trung điểm của BC nên NB = NC = 12 BC.

Mà AB = BC nên AM = MB = NB = NC.

Xét tam giác CBM vuông ở B và tam giác DCN vuông ở C có:

MB = NC (cmt)

BC = CD (cmt)

Do đó, tam giác CBM và tam giác DCN bằng nhau (hai cạnh góc vuông).

Suy ra BMC^=DNC^ .

BMC^+MCB^=90° nên DNC^+MCB^=90° .

Tam giác CON có:

ONC^+OCN^=90° (do DNC^+MCB^=90° ).

Nên NOC^=90° .

Do đó, CM vuông góc với DN tại O.

b) Ta có BC = CD = DA = AB = 4 cm; NC = 12 BC = 12 CD = 2 cm hay CD = 2NC.

Áp dụng định lý Pythagore vào tam giác CND vuông tại C ta có:

ND2 = NC2 + CD2 = NC2 + (2NC)2 = 5NC2.

Do đó, NC2ND2=15 . Suy ra NCND=15 .

Xét tam giác NOC vuông tại O và tam giác CND vuông tại C có:

ONC^ chung

Do đó, ∆ONC ᔕ ∆CND (góc nhọn).

Suy ra ONCN=OCCD=NCND=15 . Do đó, OC = 15 CD; ON = CN.

Vậy diện tích tam giác ONC là:

S=12OCON=12.15CD15CN=11042=0,8 (cm2).

1 355 05/12/2023


Xem thêm các chương trình khác: