Sách bài tập Toán 8 Bài 6 (Kết nối tri thức): Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
Với giải sách bài tập Toán 8 Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 8 Bài 6.
Giải SBT Toán 8 Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu
Bài 2.1 trang 21 SBT Toán 8 Tập 1: Những đẳng thức nào sau đây là hằng đẳng thức?
a) a2 – b2 = (a – b)(a + b);
b) 3x(2x – 1) = 6x2 + 3x;
c) 2(x – 1) = 4x + 3;
d) (2y + 3)(y + 1) = 2y2 + 5y + 3.
Lời giải:
a) Ta có: (a – b)(a + b) = a(a + b) – b(a + b)
= a2 + ab – ab – b2 = a2 – b2.
Vậy đẳng thức a2 – b2 = (a – b)(a + b) là hằng đẳng thức.
b) Xét đẳng thức 3x(2x – 1) = 6x2 + 3x
Khi thay x = 1 vào hai vế của đẳng thức ta thấy VT = 3 và VP = 9, do đó hai vế không bằng nhau.
Vậy đẳng thức 3x(2x – 1) = 6x2 + 3x không phải là hằng đẳng thức.
c) Xét đẳng thức 2(x – 1) = 4x + 3
Khi thay x = 0 vào hai vế của đẳng thức ta thấy VT = –2 và VP = 3, do đó hai vế không bằng nhau.
Vậy đẳng thức 2(x – 1) = 4x + 3 không phải là hằng đẳng thức.
d) Ta có: (2y + 3)(y + 1) = 2y(y + 1) + 3(y + 1)
= 2y2 + 2y + 3y + 3 = 2y2 + 5y + 3.
Vậy đẳng thức (2y + 3)(y + 1) = 2y2 + 5y + 3 là hằng đẳng thức.
Bài 2.2 trang 21 SBT Toán 8 Tập 1: Khai triển:
c) (2x – 3)2;
d) (3y – x)2.
Lời giải:
a) (3x + 1)2 = (3x)2 + 2.3x.1 + 12 = 9x2 + 6x +1.
b) (2y + 3x)2 = (2y)2 + 2.2y.3x + (3x)2 = 4y2 + 12xy + 9x2.
c) (2x – 3)2 = (2x)2 ‒ 2.2x.3 + 32 = 4x2 – 12x + 9.
d) (3y – x)2 = (3y)2 ‒ 2.3y.x + x2 =9y2 – 6xy + x2.
Bài 2.3 trang 21 SBT Toán 8 Tập 1: Viết các biểu thức sau dưới dạng tích:
Lời giải:
a) 4x2 + 12x + 9 = (2x)2 + 2.(2x).3 + 32 = (2x + 3)2
b) 16x2 – 8xy + y2 = (4x)2 – 2.(4x).y + y² = (4x – y)2.
c) 81x2y2 – 16z2 = (9xy)2 – (4z)2 = (9xy – 4z)(9xy + 4z).
Bài 2.4 trang 21 SBT Toán 8 Tập 1: Tính nhanh:
Lời giải:
a) 997 . 1003
= (1000 – 3)(1000 + 3)
= 10002 – 32
= 1 000 000 – 9
= 999 991.
b) 1004²
= (1000 + 4)2
= 1 0002 + 2.1000.4 + 42
= 1 000 000 + 8 000 + 16
= 1 008 016.
Bài 2.5 trang 21 SBT Toán 8 Tập 1: Rút gọn biểu thức:
a) 2(x – y)(x + y) + (x + y)2 + (x – y)2;
b) (x – y – z)2 – (x – y)2 + 2(x − y)z.
Lời giải:
a) 2(x – y)(x + y) + (x + y)2 + (x – y)2
= 2(x2 ‒ y2) + x2 + 2xy + y2 + x2 ‒ 2xy + y2
= 2x2 ‒ 2y2 + x2 + 2xy + y2 + x2 ‒ 2xy + y2
= (2x2 + x2 + x2) + (‒2y2 + y2 + y2) + (2xy ‒ 2xy)
= 4x2.
b) (x – y – z)2 – (x – y)2 + 2(x − y)z
= [(x – y) – z]2 – (x – y)2 + 2(x − y)z
= (x – y)2 – 2(x – y)z + z2 – (x – y)2 + 2(x – y)z
= [(x – y)2 – (x – y)2] + [–2(x − y)z + 2(x − y)z] + z2
= z2.
b) Biết số tự nhiên a chia 5 dư 3. Chứng minh rằng a2 chia 5 dư 4.
Lời giải:
a) Vì a chia 3 dư 2 nên ta có thể viết a = 3n + 2, n ∈ ℕ. Ta có
a2 = (3n + 2)2
= 9n2 + 2.3n.2 + 4
= 9n2 + 12n + 3 + 1
= 3(3n2 + 4n + 1) + 1
Vì 3(3n2 + 4n + 1) ⋮ 3 nên 3(3n2 + 4n + 1) + 1 chia 3 dư 1.
Do đó a2 chia 3 dư 1.
b) Vì a chia 5 dư 3 nên ta có thể viết a = 5n + 3, n ∈ ℕ. Ta có
a2 = (5n + 3)2
= 25n2 + 2.5n.3 + 9
= 25n2 + 30n + 5 + 4
= 5(5n2 + 6n + 1) + 4
Vì 5(5n2 + 6n + 1) ⋮ 5 nên 5(5n2 + 6n + 1) + 4 chia 5 dư 4.
Do đó a2 chia 5 dư 4.
Bài 2.7 trang 21 SBT Toán 8 Tập 1: Cho hai số a, b > 0 sao cho a > b, a2 + b2 = 8 và ab = 2.
a) a + b;
b) a – b.
Lời giải:
a) Ta có (a + b)2 = a2 + b2 + 2ab
Thay a2 + b2 = 8 và ab = 2 ta có:
(a + b)2 = 8 + 4 = 12 nên hoặc .
Vì a, b > 0 nên a + b > 0. Do đó .
b) Ta có (a ‒ b)2 = a2 + b2 ‒ 2ab
Thay a2 + b2 = 8 và ab = 2 ta có:
(a ‒ b)2 = 8 ‒ 4 = 4 nên a ‒ b = 2 hoặc a ‒ b = ‒2.
Vì a, b > 0 nên a ‒ b > 0. Do đó a – b = 2.
Xem thêm các bài giải Toán lớp 8 sách Kết nối tri thức hay, chi tiết khác:
Bài 5: Phép chia đa thức cho đơn thức
Bài 7: Lập phương của một tổng. Lập phương của một hiệu
Xem thêm các chương trình khác:
- Soạn văn 8 Kết nối tri thức (hay nhất)
- Văn mẫu lớp 8 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 8 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn lớp 8 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 8 - Kết nối tri thức
- Giải SBT Ngữ văn 8 – Kết nối tri thức
- Giải Vở thực hành Ngữ văn 8 Kết nối tri thức | VTH Ngữ văn 8 Tập 1, Tập 2
- Nội dung chính tác phẩm Ngữ văn lớp 8 – Kết nối tri thức
- Soạn văn 8 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 8 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 8 – Global success
- Giải sbt Tiếng Anh 8 - Global Success
- Trọn bộ Từ vựng Tiếng Anh 8 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 8 Global success
- Giải sgk Khoa học tự nhiên 8 – Kết nối tri thức
- Lý thuyết Khoa học tự nhiên 8 – Kết nối tri thức
- Giải sbt Khoa học tự nhiên 8 – Kết nối tri thức
- Giải vth Khoa học tự nhiên 8 – Kết nối tri thức
- Giải sgk Lịch sử 8 – Kết nối tri thức
- Lý thuyết Lịch sử 8 - Kết nối tri thức
- Giải sbt Lịch sử 8 – Kết nối tri thức
- Giải sgk Địa lí 8 – Kết nối tri thức
- Lý thuyết Địa lí 8 - Kết nối tri thức
- Giải sbt Địa lí 8 – Kết nối tri thức
- Giải VTH Địa lí 8 Kết nối tri thức | Vở thực hành Địa lí 8
- Giải sgk Giáo dục công dân 8 – Kết nối tri thức
- Lý thuyết Giáo dục công dân 8 – Kết nối tri thức
- Giải sbt Giáo dục công dân 8 – Kết nối tri thức
- Giải sgk Công nghệ 8 – Kết nối tri thức
- Lý thuyết Công nghệ 8 - Kết nối tri thức
- Giải sbt Công nghệ 8 – Kết nối tri thức
- Giải sgk Tin học 8 – Kết nối tri thức
- Lý thuyết Tin học 8 - Kết nối tri thức
- Giải sbt Tin học 8 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 8 – Kết nối tri thức