Sách bài tập Toán 8 Bài 17 (Kết nối tri thức): Tính chất đường phân giác của tam giác

Với giải sách bài tập Toán 8 Bài 17: Tính chất đường phân giác của tam giác sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 8 Bài 17.

1 988 19/08/2023


Giải SBT Toán 8 Bài 17: Tính chất đường phân giác của tam giác

Bài 4.11 trang 52 SBT Toán 8 Tập 1: Tìm độ dài x trong Hình 5.12.

Tìm độ dài x trong Hình 5.12 trang 52 sách bài tập Toán 8 Tập 1

Lời giải:

Trong ∆MEF có MK là phân giác của góc M nên ta có KEKF=MEMF(tính chất đường phân giác của tam giác)

Hay 3KF=58,5, suy ra KF=38,55=5,1.

Vậy x = 5,1.

Bài 4.12 trang 52 SBT Toán 8 Tập 1: Cho tam giác ABC, trung tuyến AI. Tia phân giác góc AIB và tia phân giác góc AIC cắt AB, AC lần lượt tại M và N. Chứng minh MN // BC.

Lời giải:

Cho tam giác ABC, trung tuyến AI. Tia phân giác góc AIB và tia phân giác góc AIC cắt AB

Trong ∆AIB, IM là phân giác của AIB^ nên MAMB=IAIB(tính chất đường phân giác của tam giác) (1)

Trong DAIC, IN là phân giác của AIC^ nên NANC=IAIC (tính chất đường phân giác của tam giác) (2)

AI là đường trung tuyến của ∆ABC nên I là trung điểm của BC, do đó IB = IC (3)

Từ (1), (2), (3) ta có:MAMB=NANC

Suy ra MN // BC (định lí Thales đảo).

Bài 4.13 trang 52 SBT Toán 8 Tập 1: Cho ∆ABC có AD, BE, CF lần lượt là đường phân giác của góc A, góc B, góc C (D ∈ BC, E ∈ AC, F ∈ AB). Chứng minh rằng: AEECCDDBBFFA=1.

Lời giải:

Cho ∆ABC có AD, BE, CF lần lượt là đường phân giác của góc A, góc B, góc C

Trong ∆ABC có AD là phân giác của BAC^ nên DCDB=ACAB (tính chất đường phân giác của tam giác).

Tương tự, ta có BE, CF lần lượt là tia phân giác của B^,C^.

Suy ra EAEC=BABC;FBFA=CBCA.

Do đó: AEECCDDBBFFA=BABCACABCBCA=1

Bài 4.14 trang 52 SBT Toán 8 Tập 1: Cho tam giác ABC, phân giác AD (D ∈ BC). Kẻ DE // AB (E ∈ AC). Chứng minh rằng: AB.EC = AC.EA.

Lời giải:

Cho tam giác ABC phân giác AD (D ∈ BC). Kẻ DE // AB E ∈ AC

Trong ∆ABC có AD là phân giác của BAC^ nên DBDC=ABAC (tính chất đường phân giác của tam giác).

Trong ∆ADC có DE // AB nên DBDC=EAEC (định lí Thalès trong tam giác).

Suy ra ABAC=EAEC nên AB.EC = AC.EA.

Xem thêm Lời giải bài tập SBT Toán 8 Kết nối tri thức hay, chi tiết khác: 

Bài 16: Đường trung bình của tam giác

Bài tập cuối chương 4

Bài 18: Thu thập và phân loại dữ liệu

Bài 19: Biểu diễn dữ liệu bằng bảng, biểu đồ

Bài 20: Phân tích số liệu thống kê dựa vào biểu đồ

1 988 19/08/2023


Xem thêm các chương trình khác: