50 Bài tập Ôn tập chương 1 hình học Toán 9 mới nhất
Với 50 Bài tập Ôn tập chương 1 hình họcToán lớp 9 mới nhất được biên soạn bám sát chương trình Toán 9 giúp các bạn học tốt môn Toán hơn.
Tài liệu gồm: 15 bài tập trắc nghiệm, 15 bài tập tự luận có lời giải và 20 bài tập vận dụng. Mời các bạn đón xem:
Bài tập Ôn tập chương 1 hình học- Toán 9
I. Bài tập trắc nghiệm
Câu 1: Cho tam giác ABC vuông tại A , đường cao AH (như hình vẽ). Hệ thức nào sau đây là đúng?
A. AH2 = AB.AC
B. AH2 = BH.CH
C. AH2 = AB.BH
D. AH2 = CH.BC
Cho tam giác ABC vuông tại A , đường cao AH . Khi đó ta có hệ thức: HA2 = HB.HC
Chọn đáp án B
Câu 2: Cho tam giác ABC vuông tại A , đường cao AH (như hình vẽ). Hệ thức nào sau đây là sai?
Lời giải:
Cho tam giác ABC vuông tại A , đường cao AH . Khi đó ta có các hệ thức:
Chọn đáp án D
Câu 3: Tính x, y trong hình vẽ sau:
A. x = 7,2; y = 11,8
B. x = 7; y = 12
C. x = 7,2; y = 12,8
D. x = 7,2; y = 12
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có:
Vậy x = 7,2; y = 12,8
Chọn đáp án C
Câu 4: Tính x, y trong hình vẽ sau:
A. x = 3,6; y = 6,4
B. y = 3,6; x = 6,4
C. x = 4; y = 6
D. x = 2; y = 7,2
Theo định lý Pytago ta có:
BC2 = AB2 + AC2 ⇔ BC2 = 100 ⇔ BC = 10
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có:
Vậy x = 3,6; y = 6,4
Chọn đáp án A
Câu 5: Tính x, y trong hình vẽ sau:
Theo định lý Pytago ta có:
BC2 = AB2 + AC2 ⇔ BC2 = 74
⇔ BC = √74
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có:
Chọn đáp án A
Câu 6: Tính x trong hình vẽ sau (làm tròn đến chữ số thập phân thứ hai)
A. x ≈ 8,81
B. x ≈ 8,82
C. x ≈ 8,83
D. x ≈ 8,80
Áp dung hệ thức giữa cạnh và đường cao trong tam giác vuông ABC ta có:
Chọn đáp án B
Câu 7: Cho tam giác ABC vuông tại A , đường cao AH . Cho biết AB:AC = 3:4 và AH = 6 cm. Tính độ dài đoạn thẳng CH
A. CH = 8
B. CH = 6
C. CH = 10
D. CH = 12
Ta có AB:AC = 3:4, đặt AB = 3a; AC = 4a (a > 0)
Theo hệ thức về cạnh và đường cao trong tam giác vuông AHC ta có:
Theo định lý Pytago cho tam giác vuông ta có:
Vậy CH = 8
Chọn đáp án A
Câu 8: Tính x, y trong hình vẽ sau
Áp dung hệ thức giữa cạnh và đường cao trong tam giác vuông ta có:
AH2 = BH.CH ⇒ AH2 = 1.4 ⇒ AH = 2
Áp dụng định lý Pytago cho tam giác vuông ta có:
Chọn đáp án C
Câu 9: Tính x trong hình vẽ sau
Áp dung hệ thức giữa cạnh và đường cao trong tam giác vuông ta có:
Chọn đáp án A
Câu 10: Cho tam giác MNP vuông tại M. Khi đó bằng
Chọn đáp án A
Câu 11: Cho α là góc nhọn bất kỳ. Chọn khẳng định đúng.
Cho α là góc nhọn bất kỳ, khi đó sin2α + cos2α = 1
Chọn đáp án B
Câu 12: Cho α là góc nhọn bất kỳ. Chọn khẳng định sai.
Cho α là góc nhọn bất kỳ, khi đó
Chọn đáp án D
Câu 13: Cho α và β là góc nhọn bất kỳ thỏa mãn α + β = 90° . Chọn khẳng định đúng.
A. α + β = 90°
B. tanα = cotβ
C. tanα = cosα
D. tanα = tanβ
Với hai góc α và β mà α + β = 90 °
sinα = cosβ; cosα = sinβ
tanα = cotβ ; cotα = tanβ
Chọn đáp án B
Câu 14: Cho tam giác ABC vuông tại c có BC = 1,2 cm, AC = 0,9 cm . Tính các tỉ số lượng giác sinB; cosB
Chọn đáp án A
II. Bài tập tự luận có lời giải
Câu 1: Cho tam giác cân ABC có đáy BC = 2a , cạnh bên bằng b (b > a) .
a) Tính diện tích tam giác ABC
b) Dựng BKk ⊥ AC . Tính tỷ số
Lời giải:
a) Gọi H là trung điểm của BC. Theo định lý Pitago ta có:
b) Ta có
Áp dụng định lý Pitago trong tam giác vuông AKB ta có:
Câu 2: Cho tam giác ABC với các đỉnh A, B, C và các cạnh đối diện với các đỉnh tương ứng là: a, b, c .
a) Tính diện tích tam giác ABC theo a, b , c
b) Chứng minh: a2 + b2 + c2 ≥ 4√3S
Lời giải:
a) Ta giả sử góc A là góc lớn nhất của tam giác
ABC ⇒ B, C là các góc nhọn.
Suy ra chân đường cao hạ từ A lên BC là điểm H thuộc cạnh BC.
Ta có: BC = BH + HC.
Áp dụng định lý Py ta go cho các tam giác vuông AHB, AHC ta có:
AB2 = AH2 + HB2; AC2 = AH2 + HC2
Trừ hai đẳng thức trên ta có:
Áp dụng định lý Pitago cho tam giác vuông AHB
b) Từ câu a) ta có:
Dấu bằng xảy ra khi và chỉ khi tam giác ABC đều.
III. Bài tập vận dụng
Câu 1: Biết sinα 5/13 . Tính cosα, tanα và cotα .
Câu 2: Biết sinα.cosα = 12/25. Tính sinα.cosα.
Câu 3: Cho tam giác nhọn ABC hai đường cao AD và BE cắt nhau tại H. Biết HD:HA = 1:2 . Chứng minh rằng tgB.tgC = 3 .
Câu 4: Ở một cái thang đơn dài có ghi “để dảm bảo an toàn cần đặt thang sao cho tạo với mặt đất một góc α thì phải thỏa mãn 60° < α < 75° . Vậy phải đặt thang cách vật thang dựa khoảng bao nhiêu để đảm bảo an toàn?
Xem thêm các bài Bài tập Toán lớp 9 hay, chi tiết khác:
Bài tập Sự xác định đường tròn. Tính chất đối xứng của đường tròn
Bài tập Đường kính và dây của đường tròn
Bài tập Liên hệ giữa dây và khoảng cách từ tâm đến dây
Xem thêm các chương trình khác:
- Giải sgk Hóa học 9 (sách mới) | Giải bài tập Hóa 9
- Giải sbt Hóa học 9
- Giải vở bài tập Hóa học 9
- Lý thuyết Hóa học 9
- Các dạng bài tập Hóa học lớp 9
- Tóm tắt tác phẩm Ngữ văn 9 (sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 9 (hay nhất) | Để học tốt Ngữ văn 9 (sách mới)
- Soạn văn 9 (ngắn nhất)
- Văn mẫu 9 (sách mới) | Để học tốt Ngữ văn 9 Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Tác giả - tác phẩm Ngữ văn 9 (sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 9 (thí điểm)
- Giải sgk Tiếng Anh 9 (sách mới) | Để học tốt Tiếng Anh 9
- Giải sbt Tiếng Anh 9
- Giải sbt Tiếng Anh 9 (thí điểm)
- Giải sgk Sinh học 9 (sách mới) | Giải bài tập Sinh học 9
- Giải vở bài tập Sinh học 9
- Lý thuyết Sinh học 9
- Giải sbt Sinh học 9
- Giải sgk Vật Lí 9 (sách mới) | Giải bài tập Vật lí 9
- Giải sbt Vật Lí 9
- Lý thuyết Vật Lí 9
- Các dạng bài tập Vật lí lớp 9
- Giải vở bài tập Vật lí 9
- Giải sgk Địa Lí 9 (sách mới) | Giải bài tập Địa lí 9
- Lý thuyết Địa Lí 9
- Giải Tập bản đồ Địa Lí 9
- Giải sgk Tin học 9 (sách mới) | Giải bài tập Tin học 9
- Lý thuyết Tin học 9
- Lý thuyết Giáo dục công dân 9
- Giải vở bài tập Lịch sử 9
- Giải Tập bản đồ Lịch sử 9
- Lý thuyết Lịch sử 9
- Lý thuyết Công nghệ 9