Bài 1 trang 75 Toán 7 Tập 2 | Chân trời sáng tạo Giải Toán lớp 7
Lời giải Bài 1 trang 75 Toán 7 Tập 2 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.
Giải Toán 7 Chân trời sáng tạo Bài 7: Tính chất ba đường trung tuyến của tam giác
Bài 1 trang 75 Toán 7 Tập 2:
Quan sát Hình 8. Thay bằng số thích hợp.
EG = EM; GM = EM; GM = EG;
FG = GN; FN = GN; FN = FG.
Lời giải:
Trên Hình 8 có: M và N lần lượt là trung điểm của HF và HE.
Suy ra HF và HE là hai đường trung tuyến của ∆EHF
Mà HF và HE cắt nhau tại G.
Nên G là giao điểm hai đường trung tuyến của ∆EFH.
Do đó G là trọng tâm của ∆EFH.
Khi đó:
• EG = EM nên GM = EM - EG = EM - EM = EM.
Suy ra GM : EG = EM : EM = hay GM = EG.
• FG = FN nên GN = FN - FG = FN - FN = FN.
Suy ra FG : GN = FN : FN = 2 hay FG = 2GN.
Do GN = FN nên FN = 3GN.
Do FG = FN nên FN = FG.
Ta điền như sau:
EG = EM; GM = EM; GM = EG;
FG = 2GN; FN = 3GN; FN = FG.
Xem thêm lời giải bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Khởi động trang 73 Toán 7 Tập 2: Đặt đầu bút chì ở điểm nào của tam giác thì ta có thể giữ tấm bìa thăng bằng...
Khám phá 1 trang 73 Toán 7 Tập 2: Vẽ tam giác ABC, xác định trung điểm D của cạnh BC và vẽ đoạn thẳng nối hai điểm A và D...
Thực hành 1 trang 73 Toán 7 Tập 2: Em hãy vẽ tiếp các đường trung tuyến còn lại của tam giác ABC (Hình 1)...
Vận dụng 1 trang 73 Toán 7 Tập 2: a) Vẽ đường trung tuyến DH của tam giác DEF (Hình 2).b) Vẽ đường trung tuyến MK của tam giác vuông MNP (Hình 3)...
Khám phá 2 trang 74 Toán 7 Tập 2: a) Cắt một tam giác bằng giấy. Gấp lại để xác định trung điểm một cạnh của nó. Kẻ đoạn thẳng nối trung điểm này...
Thực hành 2 trang 75 Toán 7 Tập 2: Trong Hình 7, G là trọng tâm của tam giác AEF với đường trung tuyến AM...
Vận dụng 2 trang 75 Toán 7 Tập 2: Cho tam giác ABC có O là trung điểm của BC, trên tia đối của tia OA, lấy điểm D sao cho OA = OD...
Bài 1 trang 75 Toán 7 Tập 2: Quan sát Hình 8. Thay bằng số thích hợp.EG = EM; GM = EM; GM = EG...
Bài 2 trang 75 Toán 7 Tập 2: Quan sát Hình 9.a) Biết AM = 15 cm, tính AG. b) Biết GN = 6 cm, tính CN...
Bài 3 trang 75 Toán 7 Tập 2: Cho tam giác ABC. Hai đường trung tuyến AM và CN cắt nhau tại G. Trên tia đối của tia AM lấy điểm E sao cho ME = MG...
Bài 4 trang 75 Toán 7 Tập 2: Cho tam giác ABC cân tại A có BM và CN là hai đường trung tuyến.a) Chứng minh rằng BM = CN...
Bài 5 trang 76 Toán 7 Tập 2: Cho tam giác ABC có đường trung tuyến BM bằng trung tuyến CN. Chứng minh rằng tam giác ABC cân...
Bài 6 trang 76 Toán 7 Tập 2: Cho tam giác ABC cân tại A có BE và CD là hai đường trung tuyến cắt nhau tại F (Hình 10). Biết BE = 9 cm...
Xem thêm lời giải bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Bài 6: Tính chất ba đường trung trực của tam giác
Bài 7: Tính chất ba đường trung tuyến của tam giác
Bài 8: Tính chất ba đường cao của tam giác
Bài 9: Tính chất ba đường phân giác của tam giác
Bài 10: Hoạt động thực hành và trải nghiệm. Làm giàn hoa tam giác để trang trí lớp học
Xem thêm các chương trình khác:
- Soạn văn lớp 7 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Soạn văn lớp 7 (ngắn nhất) – Chân trời sáng tạo
- Văn mẫu lớp 7 – Chân trời sáng tạo
- Giải sgk Lịch sử 7 – Chân trời sáng tạo
- Lý thuyết Lịch Sử 7 – Chân trời sáng tạo
- Giải sbt Lịch sử 7 – Chân trời sáng tạo
- Giải sgk Địa lí 7 – Chân trời sáng tạo
- Lý thuyết Địa Lí 7 – Chân trời sáng tạo
- Giải sbt Địa lí 7 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 7 Friend plus – Chân trời sáng tạo
- Giải sbt Tiếng Anh 7 Friend plus– Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 7 Friends plus đầy đủ nhất
- Bài tập Tiếng Anh 7 Friends plus theo Unit có đáp án
- Giải sgk Khoa học tự nhiên 7 – Chân trời sáng tạo
- Lý thuyết Khoa học tự nhiên 7 – Chân trời sáng tạo
- Giải sbt Khoa học tự nhiên 7 – Chân trời sáng tạo
- Giải sgk Giáo dục công dân 7 – Chân trời sáng tạo
- Lý thuyết Giáo dục công dân 7 – Chân trời sáng tạo
- Giải sbt Giáo dục công dân 7 – Chân trời sáng tạo
- Giải sgk Công nghệ 7 – Chân trời sáng tạo
- Lý thuyết Công nghệ 7 – Chân trời sáng tạo
- Giải sbt Công nghệ 7 – Chân trời sáng tạo
- Giải sgk Tin học 7 – Chân trời sáng tạo
- Lý thuyết Tin học 7 – Chân trời sáng tạo
- Giải sbt Tin học 7 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 7 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 7 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 7 – Chân trời sáng tạo
- Giải sgk Âm nhạc 7 – Chân trời sáng tạo