Bài 6 trang 76 Toán 7 Tập 2 | Chân trời sáng tạo Giải Toán lớp 7

Lời giải Bài 6 trang 76 Toán 7 Tập 2 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

1 505 28/02/2023


Giải Toán 7 Chân trời sáng tạo Bài 7: Tính chất ba đường trung tuyến của tam giác 

Bài 6 trang 76 Toán 7 Tập 2:

Cho tam giác ABC cân tại A có BE và CD là hai đường trung tuyến cắt nhau tại F (Hình 10). Biết BE = 9 cm, tính độ dài đoạn thẳng DF.

Giải Toán 7 Bài 7 (Chân trời sáng tạo): Tính chất ba đường trung tuyến của tam giác (ảnh 1) 

Lời giải:

Ta có BE và CD là hai đường trung tuyến của tam giác ABC nên E và D lần lượt là trung điểm của AC, AB.

Suy ra AE = 12AC; AD = 12AB.

Mà AB = AC (do ABC cân tại A) nên AE = AD.

Xét ∆ABE và ∆ACD có:

AB = AC (chứng minh trên);

A^ là góc chung;

AE = AD (chứng minh trên).

Do đó ∆ABE = ACD (c.g.c).

Suy ra BE = CD (hai cạnh tương ứng).

Ta có F là giao điểm hai đường trung tuyến BE và CD trong ∆ABC nên F là trọng tâm của ∆ABC.

Do đó DF = 13CD = 13BE = 13. 9 = 3 (cm).

Vậy DF = 3 cm.

1 505 28/02/2023


Xem thêm các chương trình khác: