Lý thuyết Đường thẳng vuông góc với mặt phẳng (mới 2023 + Bài Tập) - Toán 11
Lý thuyết Đường thẳng vuông góc với mặt phẳng lớp 11 gồm lý thuyết chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm Toán 11 Bài 3: Đường thẳng vuông góc với mặt phẳng.
Lý thuyết Toán 11 Bài 3: Đường thẳng vuông góc với mặt phẳng
Bài giảng Toán 11 Bài 3: Đường thẳng vuông góc với mặt phẳng
A. Lý thuyết
I. Định nghĩa
- Đường thẳng d được gọi là vuông góc vơi mặt phẳng (α) nếu d vuông góc với mọi đường thẳng a nằm trong mặt phẳng (α).
- Khi d vuông góc với (α) ta còn nói (α) vuông góc với d hoặc d và (α) vuông góc với nhau và kí hiệu là
II. Điều kiện để đường thẳng vuông góc mặt phẳng
- Định lí: Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau cùng thuộc một mặt phẳng thì nó vuông góc với mặt phẳng ấy.
- Hệ quả. Nếu một đường thẳng vuông góc với hai cạnh của một tam giác thì nó cũng vuông góc với cạnh thứ ba của tam giác đó.
Ví dụ 1. Cho tứ diện ABCD có hai tam giác ABC và ABD là các tam giác đều. Gọi I là trung điểm của AB. Chứng minhh AB vuông góc với mặt phẳng (CDI).
Lời giải
Khi đó, trong đó I là trung điểm của AB.
Thật vậy, vì ABC và ABD là các tam giác đều nên đường trung tuyến đồng thời là đường cao :
Suy ra: .
III. Tính chất.
- Tính chất 1. Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.
- Mặt phẳng trung trực của một đoạn thẳng.
Người ta gọi mặt phẳng đi qua trung điểm I của đoạn thẳng AB và vuông góc với đường thẳng AB là mặt phẳng trung trực của đoạn thẳng AB.
- Tính chất 2. Có duy nhất một đường thẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước.
IV. Liên hệ giữa quan hệ song song và quan hệ vuông góc của đường thẳng và mặt phẳng.
- Tính chất 1.
a) Cho hai đường thẳng song song.Mặt phẳng nào vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.
b) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.
- Tính chất 2.
a) Cho hai mặt phẳng song song. Đường thẳng nào vuông góc với mặt phẳng này thì cũng vuông góc với mặt phẳng kia.
b) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.
- Tính chất 3.
a) Cho đường thẳng a và mặt phẳng (α) song song với nhau. Đường thẳng nào vuông góc với (α) thì cũng vuông góc với a.
b) Nếu một đường thẳng và một mặt phẳng ( không chứa đường thẳng đó) cùng vuông góc với một đường thẳng khác thì chúng song song với nhau.
Ví dụ 2. Cho hình chóp S.ABCD có đáy ABCD là hình vuông và . Gọi I; J; K lần lượt là trung điểm của AB, BC và SB. Chứng minh:
a) (IJK) // (SAC).
b)
c) .
Lời giải:
a) Tam giác ABC có IJ Là đường trung bình của tam giác nên IJ // AC (1)
Tam giác SAB có IK là đường trung bình của tam giác nên IK// SA (2)
Từ (1) và (2) suy ra: (IJK) // (SAC) .
b) Do
Mà BD, AC (SAC) nên
c) Do và (IJK) // ( SAC) nên
V. Phép chiếu vuông góc và định lí ba đường vuông góc.
1. Phép chiếu vuông góc.
Cho đường thẳng ∆ vuông góc với mặt phẳng (α). Phép chiếu song song theo phương của ∆ lên mặt phẳng (α) được gọi là phép chiếu vuông góc lên mặt phẳng (α).
Nhận xét: Phép chiếu vuông góc lên một mặt phẳng là trường hợp đặc biệt của phép chiếu song song nên có đầy đủ các tính chất của phép chiếu song song.
2. Định lí ba đường vuông góc.
Cho đường thẳng a nằm trong mặt phẳng (α) và b là đường thẳng không thuộc (α) đồng thời không vuông góc với (α). Gọi b’ là hình chiếu vuông góc của b trên (α). Khi đó, a vuông góc với b khi và chỉ khi a vuông góc với b’.
3. Góc giữa đường thẳng và mặt phẳng.
Định nghĩa:
Cho đường thẳng d và mặt phẳng (α).
+ Trường hợp đường thẳng d vuông góc với mặt phẳng (α) thì ta nói rằng góc giữa đường thẳng d và mặt phẳng (α) bằng 900.
+ Trường hợp đường thẳng d không vuông góc với mặt phẳng (α) thì góc giữa d và hình chiếu d’ của nó trên (α) gọi là góc giữa đường thẳng d và mặt phẳng (α).
Khi d không vuông góc với (α) thì d cắt (α) tại điểm O, ta lấy một điểm A tùy ý trên d khác điểm O. Gọi H là hình chiếu vuông góc của A lên (α) và là góc giữa d và (α) thì
- Chú ý: Nếu là góc giữa d và mặt phẳng (α) thì ta luôn có: .
Ví dụ 3. Cho hình chóp S.ABC có đáy ABC là tam giác vuông cạnh huyền BC = a. Hình chiếu vuông góc của S lên ( ABC) trùng với trung điểm BC. Biết SB = a. Tính số đo của góc giữa SA và ( ABC).
Lời giải:
Gọi H là trung điểm của BC.
Vì tam giác ABC vuông góc tại A có đường trung tuyến AH nên suy ra
Ta có:
B. Bài tập tự luyện
Bài 1. Cho hình chóp S. ABC có và tam giác ABC vuông ở B , AH là đường cao của tam giác SAB. Chứng minh:
a)
b)
Lời giải:
a)
Do và BC ⊂ ( ABC) nên .
Ta có:
b)Vì
Lại có: SB
Bài 2. Cho tứ diện OABC có ba cạnh OA ; OB ; OC đôi một vuông góc. Gọi H là hình chiếu của O lên ( ABC). Chứng minh :
a)
b)
c) H là trực tâm tam giác ABC
Lời giải :
a) Ta có:
b) Hạ
Ta có:
Xét tam giác AOI vuông tại O có OH đường cao :
c) Ta có:
Tương tự
Từ (1) và (2) suy ra: H là trực tâm tam giác ABC
Bài 3. Cho hình chóp S.ABC có . Gọi H, K lần lượt là trực tâm các tam giác SBC và ABC. Chứng minh:
a)
b) .
c) SH ; AK và BC đồng quy.
a) Ta có
b)Ta có
Mặt khác có
Tương tự,
c) Gọi M là giao điểm của SH và BC.
Do hay đường thẳng AM trùng với đường thẳng AK .
Suy ra, SH, AK và BC đồng quy.
Bài 4. Cho hình chóp S.ABCD , đáy ABCD là hình vuông cạnh bằng a và . Biết . Tính góc giữa SC và ( ABCD) .
Lời giải :
Ta có:
+ Do ABCD là hình vuông cạnh a
Trắc nghiệm Toán 11 Bài 3: Đường thẳng vuông góc với mặt phẳng
Câu 1: Trong các mệnh đề sau, mệnh đề nào sai?
A. Nếu đường thẳng a song song với mặt phẳng và đường thẳng b vuông góc với a thì b vuông góc với mặt phẳng
B. Nếu đường thẳng a song song với đường thẳng b và b song song với mặt phẳng thì a song song hoặc nằm trên mặt phẳng
C. Nếu đường thẳng a song song với mặt phẳng và đường thẳng b vuông góc với mặt phẳng thì a vuông góc với b
D. Một đường thẳng vuông góc với hai đường thẳng cắt nhau trong một mặt phẳng thì nó vuông góc với mặt phẳng đó.
Đáp án: A
Giải thích:
Giả sử xét hình lập phương như hình vẽ có
nhưng
Câu 2: Cho hình chóp S.ABC có và tam giác ABC vuông tại B. Vẽ , . Khẳng định nào sau đây đúng?
A. H trùng với trọng tâm tam giác ABC
B. H trùng với trực tâm tam giác ABC
C. H trùng với trung điểm của AC
D. H trùng với trung điểm của BC
Đáp án: C
Giải thích:
Do nên .
Suy ra H là tâm đường tròn ngoại tiếp .
Mà vuông tại B nên H là trung điểm của AC.
Câu 3: Cho hình chóp S.ABC thỏa mãn . Tam giác AC vuông tại A. Gọi H là hình chiếu vuông góc của S lên . Chọn khẳng định sai trong các khẳng định sau?
A.
B.
C.
D.
Đáp án: A
Giải thích:
Câu 4: Cho hình chóp S.ABCD có các cạnh bên bằng nhau . Gọi H là hình chiếu của S lên mặt đáy ABCD. Khẳng định nào sau đây sai?
A.
B. Tứ giác ABCD là hình bình hành.
C. Tứ giác ABCD nội tiếp được trong đường tròn.
D. Các cạnh SA, SB, SC, SD hợp với đáy ABCD những góc bằng nhau.
Đáp án: B
Giải thích:
Vì hình chóp S.ABCD có các cạnh bên bằng nhau
và H là hình chiếu của S lên mặt đáy ABCD
Nên H tâm đường tròn ngoại tiếp tứ giác ABCD
Suy ra .
Nên đáp án B sai.
Câu 5: Cho tứ diện ABCD có cạnh AB, BC, BD bằng nhau và vuông góc với nhau từng đôi một. Khẳng định nào sau đây đúng?
A. Góc giữa AC và là góc ACB.
B. Góc giữa AD và là góc ADB.
C. Góc giữa AC và là góc CAB.
D. Góc giữa CD và là góc CBD.
Đáp án: A
Giải thích:
Từ giả thiết ta có
Do đó
Câu 6: Cho tam giác ABC vuông cân tại A và . Trên đường thẳng qua A vuông góc với lấy điểm S sao cho . Tính số đo góc giữa đường thẳng SA và .
A. .
B. .
C. .
D. .
Đáp án: D
Giải thích:
Câu 7: Cho tứ diện ABCD có cạnh vuông góc với nhau từng đôi một. Khẳng định nào sau đây đúng ?
A. Góc giữa CD và là góc
B. Góc giữa AC và là góc
C. Góc giữa AD và là góc
D. Góc giữa AC và là góc
Đáp án: B
Giải thích:
Do vuông góc với nhau từng đôi một nên , suy ra BC là hình chiếu của AC lên .
Câu 8: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cạnh huyền . Hình chiếu vuông góc của S lên trùng với trung điểm BC. Biết . Tính số đo của góc giữa SA và .
A.
B.
C.
D.
Đáp án: C
Giải thích:
Gọi H là trung điểm của BC suy ra
Ta có:
Câu 9: Cho hình chóp , đáy ABCD là hình vuông cạnh bằng a và . Biết . Tính góc giữa SC và .
A.
B.
C.
D.
Đáp án: A
Giải thích:
Ta có:
ABCD là hình vuông cạnh a
Câu 10: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của S lên trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Tính số đo của góc giữa SA và
A.
B.
C.
D.
Đáp án: C
Giải thích:
Do H là hình chiếu của S lên mặt phẳng nên
Vậy AH là hình chiếu của SH lên mp
Ta có:
Mà: .
Vậy tam giác SAH vuông cân tại H
Xem thêm các bài tổng hợp lý thuyết Toán lớp 11 đầy đủ, chi tiết khác:
Lý thuyết Vectơ trong không gian
Lý thuyết Hai đường thẳng vuông góc
Xem thêm các chương trình khác:
- Giải sgk Hóa học 11 | Giải bài tập Hóa học 11 Học kì 1, Học kì 2 (Sách mới)
- Lý thuyết Hóa học 11(sách mới) | Kiến thức trọng tâm Hóa 11
- Giải sbt Hóa học 11 (sách mới) | Sách bài tập Hóa học 11
- Các dạng bài tập Hóa học lớp 11
- Giáo án Hóa học lớp 11 mới nhất
- Tóm tắt tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 11 (hay nhất) | Để học tốt Ngữ Văn 11 (sách mới)
- Soạn văn 11 (ngắn nhất) | Để học tốt Ngữ văn 11 (sách mới)
- Tác giả tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Văn mẫu 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 11 (thí điểm)
- Giải sgk Tiếng Anh 11 | Giải bài tập Tiếng anh 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Tiếng Anh 11 (sách mới) | Sách bài tập Tiếng Anh 11
- Giải sbt Tiếng Anh 11 (thí điểm)
- Giải sgk Lịch sử 11 | Giải bài tập Lịch sử 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Lịch Sử 11(sách mới) | Kiến thức trọng tâm Lịch Sử 11
- Giải Tập bản đồ Lịch sử 11
- Giải sgk Vật Lí 11 | Giải bài tập Vật lí 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Vật Lí 11 (sách mới) | Sách bài tập Vật Lí 11
- Lý thuyết Vật Lí 11 (sách mới) | Kiến thức trọng tâm Vật Lí 11
- Các dạng bài tập Vật Lí lớp 11
- Giáo án Vật lí lớp 11 mới nhất
- Giải sgk Sinh học 11 | Giải bài tập Sinh học 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Sinh học 11 (sách mới) | Kiến thức trọng tâm Sinh 11
- Giải sgk Giáo dục công dân 11
- Lý thuyết Giáo dục công dân 11
- Lý thuyết Địa Lí 11 (sách mới) | Kiến thức trọng tâm Địa lí 11
- Giải Tập bản đồ Địa Lí 11
- Giải sgk Giáo dục quốc phòng - an ninh 11