Lý thuyết Ôn tập chương 3 (mới 2023 + Bài Tập) - Toán 11
Lý thuyết Ôn tập chương 3 lớp 11 gồm lý thuyết chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sẽ giúp học sinh nắm vững kiến thức trọng tâm Toán 11 Ôn tập chương 3.
Lý thuyết Toán 11 Ôn tập chương 3
A. Lý thuyết.
1. Vecto trong không gian
1.1. Định nghĩa và các phép toán về vecto trong không gian.
1.1.1. Định nghĩa
- Vecto trong không gian là một đoạn thẳng có hướng. Kí hiệu chỉ vecto có điểm đầu là A, điểm cuối là B. Vecto còn được kí hiệu là
- Các khái niệm liên quan đến vecto như giá của vecto, độ dài của vecto, sự cùng phương, cùng hướng của vecto, vecto – không, sự bằng nhau của hai vecto ….được định nghĩa tương tự như trong mặt phẳng.
1.1.2. Phép cộng và phép trừ vecto trong không gian,
- Phép cộng và phép trừ của hai vecto trong không gian được định nghĩa tương tự như phép cộng và phép trừ hai vecto trong mặt phẳng.
- Phép cộng vecto trong không gian cũng có các tính chất như phép cộng vecto trong mặt phẳng. Khi thực hiện phép cộng vecto trong không gian ta vẫn có thể áp dụng quy tắc ba điểm, quy tắc hình bình hành như đối với vecto trong hình học phẳng.
Ví dụ 1. Cho tứ diện ABCD. Chứng minh
Lời giải:
Áp dụng quy tắc ba điểm ta có:
Ta có:
( điều phải chứng minh).
1.2. Điều kiện đồng phẳng của ba vecto.
1.2.1. Khái niệm về sự đồng phẳng của ba vecto trong không gian.
Trong không gian cho ba vecto . Nếu từ một điểm O bất kì ta vẽ: thì có thể xảy ra hai trường hợp:
+ Trường hợp các đường thẳng OA; OB; OC không cùng nằm trong một mặt phẳng, khi đó ta nói rằng ba vecto không đồng phẳng.
+ Trường hợp các đường thẳng OA; OB; OC cùng nằm trong một mặt phẳng thì ta nói rằng ba vecto đồng phẳng.
Trong trường hợp này, giá của các vecto luôn luôn song song với một mặt phẳng.
- Chú ý. Việc xác định sự đồng phẳng hoặc không đồng phẳng của ba vecto nói trên không phụ thuộc vào việc chọn điểm O.
1.2.2. Định nghĩa:
Trong không gian ba vecto được gọi là đồng phẳng nếu các giá của chúng cùng song song với một mặt phẳng.
Ví dụ 2. Cho hình hộp ABCD.EFGH. Gọi I là tâm hình bình hành ABEF và K là tâm hình bình hành BCGF. Chứng minh đồng phẳng.
Lời giải:
Xét tam giác FAC có I ; K lần lượt là trung điểm của AF và FC nên IK là đường trung bình của tam giác.
IK// AC nên IK// mp ( ABCD) .
Vì BC// GF nên GF // mp( ABCD)
Ta có :
đồng phẳng.
1.2.3. Điều kiện để ba vecto đồng phẳng.
Định lí 1.
Trong không gian cho hai vecto không cùng phương và vecto . Khi đó, ba vecto đồng phẳng khi và chỉ khi có cặp số m; n sao cho . Ngoài ra, cặp số m; n là suy nhất.
- Định lí 2.
Trong không gian cho ba vecto không đồng phẳng . Khi đó, với mọi vecto ta đều tìm được một bộ ba số m, n, p sao cho . Ngoài ra, bộ ba số m; n; p là duy nhất.
Ví dụ 3. Cho hình lăng trụ ABC.A’B’C’ gọi M là trung điểm của BB’ . Đặt . Phân tích vecto theo .
Lời giải:
Áp dụng quy tắc 3 điểm và quy tắc hiệu hai vecto ta có :
(vì M là trung điểm của BB’) .
2. Hai đường thẳng vuông góc
2.1. Tích vô hướng của hai vecto trong không gian.
2.1.1. Góc giữa hai vecto trong không gian.
- Định nghĩa. Trong không gian, cho là hai vecto khác vecto- không. Lấy một điểm A bất kì, gọi B và C là hai điểm sao cho . Khi đó, ta gọi góc là góc giữa hai vecto trong không gian.
Kí hiệu là ().
2.2. Tích vô hướng của hai vecto trong không gian.
- Định nghĩa:
Trong không gian có hai vecto đều khác vecto- không . Tích vô hướng của hai vecto là một số, kí hiệu là , được xác định bởi công thức:
Trường hợp hoặc ta quy ước: = 0.
Ví dụ 1. Cho hình chóp S.ABC có SA= SB= SC và . Hãy xác định góc giữa cặp vectơ và ?
Lời giải :
Ta có
Vì SA= SB= SC và
Ta lại có:
Do đó .
2.2.1. Định nghĩa.
Nếu khác vecto - không được gọi là vecto chỉ phương của đường thẳng d nếu giá của vecto song song hoặc trùng với đường thẳng d.
2.2.2 Nhận xét.
a) Nếu là vecto chỉ phương của đường thẳng d thì vecto cũng là vecto chỉ phương của d.
b) Một đường thẳng d trong không gian hoàn toàn được xác định nếu biết một điểm A thuộc đường thẳng d và một vecto chỉ phương của nó.
c) Hai đường thẳng song song với nhau khi và chỉ khi chúng là hai đường thẳng phân biệt và có hai vecto chỉ phương cùng phương.
2.3. Góc giữa hai đường thẳng trong không gian.
2.3.1. Định nghĩa:
Góc giữa hai đường thẳng a và b trong không gian là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm và lần lượt song song với a và b.
2.3.2. Nhận xét.
a) Để xác định góc giữa hai đường thẳng a và b ta có thể lấy điểm O thuộc một trong hai đường thẳng đó rồi vẽ một đường thẳng qua O và song song với đường thẳng còn lại.
b) Nếu là vecto chỉ phương của đường thẳng a và là vecto chỉ phương của đường thẳng b và thì góc giữa hai đường thẳng a và b bằng nếu và bằng nếu .
Nếu a và b song song hoặc trùng nhau thì góc giữa chúng bằng 00.
Ví dụ 2. Cho hình lập phương ABCD.A’B’C’D’. Tính góc giữa AC và DA’
Lời giải:
Gọi a là độ dài cạnh hình lập phương.
Khi đó, tam giác AB’C đều (AB’ = B’C= CA = )
Do đó .
Lại có, DA’ song song CB’ nên
(AC ; DA’) = (AC ; CB’) = .
2.4. Hai đường thẳng vuông góc.
2.4.1. Định nghĩa.
Hai đường thẳng được gọi là vuông góc nếu góc giữa chúng bằng 900.
Ta kí hiệu hai đường thẳng a và b vuông góc với nhau là .
2.4.2. Nhận xét
a) Nếu lần lượt là các vecto chỉ phương của hai đường thẳng a và b thì .
b) Cho hai đường thẳng song song. Nếu một đường thẳng vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.
c) Hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau.
Ví dụ 3. Cho tứ diện ABCD có AB= AC= AD và . Gọi I và J lần lượt là trung điểm của AB và CD. Chứng minh hai đường thẳng AB và IJ vuông góc với nhau.
Lời giải:
Xét tam giác ICD có J là trung điểm đoạn CD
Tam giác ABC có AB = AC và nên tam giác ABC đều
. (1)
Tương tự, ta có tam giác ABD đều nên . ( 2)
Từ (1) và (2) ta có :
3. Đường thẳng vuông góc với mặt phẳng.
3.1. Định nghĩa
- Đường thẳng d được gọi là vuông góc vơi mặt phẳng (α) nếu d vuông góc với mọi đường thẳng a nằm trong mặt phẳng (α).
- Khi d vuông góc với (α) ta còn nói (α) vuông góc với d hoặc d và (α) vuông góc với nhau và kí hiệu là
3.2. Điều kiện để đường thẳng vuông góc mặt phẳng
- Định lí: Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau cùng thuộc một mặt phẳng thì nó vuông góc với mặt phẳng ấy.
- Hệ quả. Nếu một đường thẳng vuông góc với hai cạnh của một tam giác thì nó cũng vuông góc với cạnh thứ ba của tam giác đó.
Ví dụ 1. Cho tứ diện ABCD có hai tam giác ABC và ABD là các tam giác đều. Gọi I là trung điểm của AB. Chứng minhh AB vuông góc với mặt phẳng (CDI).
Lời giải
Khi đó, trong đó I là trung điểm của AB.
Thật vậy, vì ABC và ABD là các tam giác đều nên đường trung tuyến đồng thời là đường cao :
Suy ra: .
3.3. Tính chất.
- Tính chất 1. Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.
- Mặt phẳng trung trực của một đoạn thẳng.
Người ta gọi mặt phẳng đi qua trung điểm I của đoạn thẳng AB và vuông góc với đường thẳng AB là mặt phẳng trung trực của đoạn thẳng AB.
- Tính chất 2. Có duy nhất một đường thẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước.
3.4. Liên hệ giữa quan hệ song song và quan hệ vuông góc của đường thẳng và mặt phẳng.
- Tính chất 1.
a) Cho hai đường thẳng song song.Mặt phẳng nào vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.
b) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.
- Tính chất 2.
a) Cho hai mặt phẳng song song. Đường thẳng nào vuông góc với mặt phẳng này thì cũng vuông góc với mặt phẳng kia.
b) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.
- Tính chất 3.
a) Cho đường thẳng a và mặt phẳng (α) song song với nhau. Đường thẳng nào vuông góc với (α) thì cũng vuông góc với a.
b) Nếu một đường thẳng và một mặt phẳng ( không chứa đường thẳng đó) cùng vuông góc với một đường thẳng khác thì chúng song song với nhau.
Ví dụ 2. Cho hình chóp S.ABCD có đáy ABCD là hình vuông và . Gọi I; J; K lần lượt là trung điểm của AB, BC và SB. Chứng minh:
a) (IJK) // (SAC).
b)
c) .
Lời giải:
a) Tam giác ABC có IJ Là đường trung bình của tam giác nên IJ // AC (1)
Tam giác SAB có IK là đường trung bình của tam giác nên IK// SA (2)
Từ (1) và (2) suy ra: (IJK) // (SAC) .
b) Do
Mà BD, AC (SAC) nên
c) Do và (IJK) // ( SAC) nên
3.5. Phép chiếu vuông góc và định lí ba đường vuông góc.
3.5.1. Phép chiếu vuông góc.
Cho đường thẳng ∆ vuông góc với mặt phẳng (α). Phép chiếu song song theo phương của ∆ lên mặt phẳng (α) được gọi là phép chiếu vuông góc lên mặt phẳng (α).
Nhận xét: Phép chiếu vuông góc lên một mặt phẳng là trường hợp đặc biệt của phép chiếu song song nên có đầy đủ các tính chất của phép chiếu song song.
3.5.2. Định lí ba đường vuông góc.
Cho đường thẳng a nằm trong mặt phẳng (α) và b là đường thẳng không thuộc (α) đồng thời không vuông góc với (α). Gọi b’ là hình chiếu vuông góc của b trên (α). Khi đó, a vuông góc với b khi và chỉ khi a vuông góc với b’.
3.5.3. Góc giữa đường thẳng và mặt phẳng.
Định nghĩa:
Cho đường thẳng d và mặt phẳng (α).
+ Trường hợp đường thẳng d vuông góc với mặt phẳng (α) thì ta nói rằng góc giữa đường thẳng d và mặt phẳng (α) bằng 900.
+ Trường hợp đường thẳng d không vuông góc với mặt phẳng (α) thì góc giữa d và hình chiếu d’ của nó trên (α) gọi là góc giữa đường thẳng d và mặt phẳng (α).
Khi d không vuông góc với (α) thì d cắt (α) tại điểm O, ta lấy một điểm A tùy ý trên d khác điểm O. Gọi H là hình chiếu vuông góc của A lên (α) và là góc giữa d và (α) thì
- Chú ý: Nếu là góc giữa d và mặt phẳng (α) thì ta luôn có: .
Ví dụ 3. Cho hình chóp S.ABC có đáy ABC là tam giác vuông cạnh huyền BC = a. Hình chiếu vuông góc của S lên ( ABC) trùng với trung điểm BC. Biết SB = a. Tính số đo của góc giữa SA và ( ABC).
Lời giải:
Gọi H là trung điểm của BC.
Vì tam giác ABC vuông góc tại A có đường trung tuyến AH nên suy ra
Ta có:
4. Hai mặt phẳng vuông góc
4.1. Góc giữa hai mặt phẳng
4.1.1. Định nghĩa:
Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó.
- Nếu hai mặt phẳng song song hoặc trùng nhau thì ta nói rằng góc giữa hai mặt phẳng đó bằng 00.
4.1.2. Cách xác định góc giữa hai mặt phẳng cắt nhau.
- Giả sử 2 mặt phẳng (α) và (β) cắt nhau theo giao tuyến c. Từ một điểm I bất kì trên c ta dựng trong (α) đường thẳng a vuông góc với c và dựng trong (β) đường thẳng b vuông góc với c.
- Khi đó, góc giữa hai mặt phẳng (α) và (β) là góc giữa hai đường thẳng a và b.
Ví dụ 1. Cho hình chóp S. ABC có , gọi I là trung điểm BC. Ta xác định góc giữa hai mặt phẳng ( SBC) và ( ABC) :
Ta có:
4.1.3. Diện tích hình chiếu của một đa giác.
Cho đa giác H nằm trong mặt phẳng (α) có diện tích S và H’ là hình chiếu vuông góc của H lên mp(β).
Khi đó, diện tích S’ của H’ được tính theo công thức:
với là góc giữa (α) và (β).
4.2. Hai mặt phẳng vuông góc.
4.2.1. Định nghĩa.
Hai mặt phẳng gọi là vuông góc với nhau nếu góc giữa hai mặt phẳng đó là góc vuông.
Nếu hai mặt phẳng (α) và (β) vuông góc với nhau ta kí hiệu: .
4.2.2. Các định lí.
- Định lí 1.
Điều kiện cần và đủ để hai mặt phẳng vuông góc với nhau là mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
- Hệ quả 1.
Nếu hai mặt phẳng vuông góc với nhau thì bất cứ đường thẳng nào nằm trong mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.
- Hệ quả 2.
Cho hai mặt phẳng (α) và (β) vuông góc với nhau. Nếu từ một điểm thuộc mặt phẳng (α) ta dựng một đường thẳng vuông góc với mặt phẳng (β) thì đường thẳng này nằm trong mặt phẳng (α).
Ví dụ 2. Cho tứ diện ABCD có . Trong tam giác BDC vẽ các đường cao BE và DF cắt nhau ở O. Trong( ADC) vẽ tại K. Chứng minh
a)
b)
c)
Lời giải:
a) Ta có
b) Ta có:
Mà
c) Ta có
4.3. Hình lăng trụ đứng, hình hộp chữ nhật, hình lập phương.
4.3.1. Định nghĩa.
Hình lăng trụ đứng là hình lăng trụ có các cạnh bên vuông góc với các mặt đáy. Độ dài cạnh bên được gọi là chiều cao của hình lăng trụ đứng.
- Hình lăng trụ đứng có đáy là tam giác, tứ giác, ngũ giác… được gọi là hình lăng trụ đứng tam giác, hình lăng trụ đứng tứ giác, hình lăng trụ đứng ngũ giác…
- Hình lăng trụ đứng có đáy là một đa giác đều được gọi là hình lăng trụ đều.
Ta có các loại hình lăng trụ đều như lăng trụ tam giác đều, lăng trụ tứ giác đều..
- Hình lăng trụ đứng có đáy là hình bình hành được gọi là hình hộp đứng.
- Hình lăng trụ đứng có đáy là hình chữ nhật được gọi là hình hộp chữ nhật.
- Hình lăng trụ đứng có đáy là hình vuông và các mặt bên đều là hình vuông được gọi là hình lập phương.
4.3.2. Nhận xét
Các mặt bên của hình lăng trụ đứng luôn luôn vuông góc với mặt phẳng đáy và là những hình chữ nhật.
4.4. Hình chóp đều và hình chóp cụt đều.
4.4.1. Hình chóp đều.
Cho hình chóp đỉnh S có đáy là đa giác A1A2…An và H là hình chiếu vuông góc của S trên mặt phẳng đáy (A1A2…An). Khi đó, đoạn thẳng SH gọi là đường cao của hình chóp và H là chân đường cao của hình chóp.
- Định nghĩa. Một hình chóp được gọi là hình chóp đều nếu nó có đáy là một đa giác đều và có chân đường cao trùng với tâm của đa giác đáy.
- Nhận xét:
a) Hình chóp đều có các mặt bên là những tam giác cân bằng nhau. Các mặt bên tạo với mặt đáy các góc bằng nhau.
b) Các cạnh bên của hình chóp đều tạo với mặt đáy các góc bằng nhau.
4.4.2. Hình chóp cụt đều.
- Định nghĩa: Phần của hình chóp đều nằm giữa đáy và một thiết diện song song với đáy cắt các cạnh bên của hình chóp đều được gọi là hình chóp cụt đều.
- Ví dụ 3: Hình ABCD.A’B’C’D’ ở hình dưới là một hình chóp cụt đều. Hai đáy của hình chóp cụt đều là 2 đa giác đều và đồng dạng với nhau.
- Nhận xét. Các mặt bên của hình chóp cụt đều là những hình thang cân và các cạnh bên của hình chóp cụt đều có độ dài bằng nhau.
5. Khoảng cách
5.1. Khoảng cách từ một điểm đến một đường thẳng, một mặt phẳng.
5.1.1. Khoảng cách từ một điểm đến một đường thẳng
Cho điểm O và đường thẳng a. Trong mặt phẳng (O; a), gọi H là hình chiếu vuông góc của O lên a. Khi đó, khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến đường thẳng a.
Kí hiệu: d(O; a).
Ví dụ 1. Cho hình lập phương ABCD. A'B'C'D' cạnh a. Tính khoảng cách từ B tới đường thẳng DB'.
Lời giải:
Từ giả thuyết ta suy ra:
Gọi H là hình chiếu của B lên DB' ta có: BH = d (B, DB').
Xét tam giác BB'D vuông tại B ta có:
5.1.2. Khoảng cách từ một điểm đến một mặt phẳng
Cho điểm O và mặt phẳng (α). Gọi H là hình chiếu vuông góc của O lên mặt phẳng (α). Khi đó khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến mặt phẳng (α) và được kí hiệu là d(O; (α)).
Ví dụ 2. Cho hình chóp S. ABC có , ∆ABC là tam giác đều cạnh a và tam giác SAB cân. Tính khoảng cách h từ điểm A đến mặt phẳng (SBC).
Lời giải:
Gọi D là trung điểm BC. Do tam giác ABC đều nên (1).
Trong tam giác SAD, kẻ (2).
Do (3).
Từ (2) và (3), ta suy ra AH vuông góc với (SBC) nên d(A ; (SBC))= AH.
Theo giả thiết, ta có SA = AB = a, (đường cao trong tam giác đều cạnh a).
Tam giác SAD vuông nên
5.2. Khoảng cách giữa đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song.
5.2.1. Khoảng cách giữa đường thẳng và măt phẳng song song.
- Định nghĩa:
Cho đường thẳng a song song với mặt phẳng (α). Khoảng cách giữa đường thẳng a và mặt phẳng (α) là khoảng cách từ một điểm bất kì thuộc a đến mặt phẳng (α).
Kí hiệu là d(a; (α)) .
5.2.2. Khoảng cách giữa hai mặt phẳng song song.
- Định nghĩa: Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì của mặt phẳng này đến mặt phẳng kia.
- Kí hiệu: d((α); (β)).
Như vậy: d((α); (β)) = d(M; (β)) = d(M’; (α)).
5.3. Đường vuông góc chung và khoảng cách hai đường thẳng chéo nhau.
5.3.1. Định nghĩa.
a) Đường thẳng ∆ cắt hai đường thẳng chéo nhau a, b và cùng vuông góc với mỗi đường thẳng ấy được gọi là đường vuông góc chung của a và b.
b) Nếu đường vuông góc chung ∆ cắt hai đường thẳng chéo nhau a, b lần lượt tại M; N thì độ dài đoạn thẳng MN gọi là khoảng cách giữa hai đường thẳng chéo nhau a và b.
5.3.2. Cách tìm đường vuông góc chung của hai đường thẳng chéo nhau.
- Cho hai đường thẳng chéo nhau a và b. Gọi (β) là mặt phẳng chứa b và song song với a; a’ là hình chiếu vuông góc của a trên mặt phẳng (β).
Vì a// (β) nên a// a’. Do đó; a’ cắt b tại 1 điểm là N
Gọi (α) là mặt phẳng chứa a và a’; ∆ là đường thẳng đi qua N và vuông góc với (β). Khi đó, (α) vuông góc (β).
Như vậy.∆ nằm trong (α) nên cắt đường thẳng a tại M và cắt đường thẳng b tại N.Đồng thời, ∆ vuông góc với cả a và b.
Do đó, ∆ là đường vuông góc chung của a và b.
Ví dụ 3. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng chéo nhau SA và BC.
Lời giải :
Do và .
Vì tam giác SAB đều nên gọi M là trung điểm của SA thì nên BM là đoạn vuông góc chung của BC và SA.
Vậy .
5.3.3. Nhận xét
a) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó đến mặt phẳng song song với nó và chứa đường thẳng còn lại.
b) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó.
Ví dụ 4. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy, SA= a. Khoảng cách giữa hai đường thẳng SB và CD là
Lời giải :
Vì .
Ta có: .
Vì
Suy ra: CD // (SAB) nên :
d(CD, SB) = d(CD, (SAB)) = d(D, (SAB)) = DA = a,
B. Bài tập tự luyện
Bài 1. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt . Chứng minh:
Lời giải:
Gọi O là tâm của hình bình hành ABCD. Ta có:
(do tính chất của đường trung tuyến)
Bài 2. Cho tứ diện ABCD có G là trọng tâm tam giác BCD. Đặt . Phân tích vecto theo các vecto
Lời giải:
Gọi M là trung điểm CD.
Ta có :
( do M là trung điểm của CD))
Bài 3. Cho hình hộp ABCD.A’B’C’D’. Gọi I và K lần lượt là tâm của hình bình hành ABB’A’ và BCC’B’. Chứng minh:
a) .
b) Bốn điểm I; K; C; A đồng phẳng.
c) .
d) Ba vectơ đồng phẳng.
Lời giải:
a) Do tính chất đường trung bình trong tam giác A’BC’ và tính chất của hình bình hành ACC’A’ nên ta có:
b) Do IK là đường trung bình của tam giác AB’C nên IK// AC
Suy ra, bốn điểm I; K; C; A đồng phẳng.
c) Ta có:
d) Vì giá của ba vectơ đều song song hoặc trùng với mặt phẳng (ABCD). Do đó, theo định nghĩa sự đồng phẳng của các vectơ, ba vectơ trên đồng phẳng.
Bài 4. Cho tứ diện ABCD có AB = CD = a, ( I; J lần lượt là trung điểm của BC và AD). Tính số đo góc giữa hai đường thẳng AB và CD:
Gọi M; N lần lượt là trung điểm AC; BD.
Ta có:
là hình thoi.
Gọi O là giao điểm của MN và IJ.
Ta có: .
Xét tam giác MIO vuông tại O, ta có:
Mà:
Bài 5. Cho tứ diện ABCD có BA = CD. Gọi I ; J ; E ; F lần lượt là trung điểm của AC ; BC ; BD ; AD. Tính góc ( IE ; JF)
Lời giải :
Ta có IF là đường trung bình của tam giác ACD ( 1)
Lại có JE là đường trung bình của tam giác BCD ( 2)
Từ (1) và (2) suy ra : IF = JE và IF// JE.
Suy ra, tứ giác IJEF là hình bình hành.
Mặt khác: . Mà AB= CD nên IJ= JE.
Do đó IJEF là hình thoi.
Suy ra ( IE ; JF) = 900.
Bài 6. Cho tứ diện đều ABCD. Số đo góc giữa hai đường thẳng AB và CD bằng:
Lời giải :
Gọi M là trung điểm của CD.
Tam giác ACD và tam giác BCD là tam giác đều ( vì ABCD là tứ diện đều) có AM ; BM là hai đường trung tuyến ứng với cạnh CD nên đồng thời là đường cao.
Do đó .
Suy ra nên số đo góc giữa hai đường thẳng AB và CD bằng 900
Bài 7. Cho hình chóp S. ABC có và tam giác ABC vuông ở B , AH là đường cao của tam giác SAB. Chứng minh:
a)
b)
Lời giải:
a)
Do và BC ⊂ ( ABC) nên .
Ta có:
b)Vì
Lại có: SB
Bài 8. Cho tứ diện OABC có ba cạnh OA ; OB ; OC đôi một vuông góc. Gọi H là hình chiếu của O lên ( ABC). Chứng minh :
a)
b)
c) H là trực tâm tam giác ABC
Lời giải :
a) Ta có:
b) Hạ
Ta có:
Xét tam giác AOI vuông tại O có OH đường cao :
c) Ta có:
Tương tự
Từ (1) và (2) suy ra: H là trực tâm tam giác ABC
Bài 9. Cho hình chóp S.ABC có . Gọi H, K lần lượt là trực tâm các tam giác SBC và ABC. Chứng minh:
a)
b) .
c) SH ; AK và BC đồng quy.
a) Ta có
b)Ta có
Mặt khác có
Tương tự,
c) Gọi M là giao điểm của SH và BC.
Do hay đường thẳng AM trùng với đường thẳng AK .
Suy ra, SH, AK và BC đồng quy.
Bài 10. Cho hình chóp S.ABCD , đáy ABCD là hình vuông cạnh bằng a và . Biết . Tính góc giữa SC và ( ABCD) .
Lời giải :
Ta có:
+ Do ABCD là hình vuông cạnh a
Bài 11. Cho tứ diện ABCD có hai mặt phẳng (ABC) và ( ABD) cùng vuông góc với ( DBC). Gọi BE và DF là hai đường cao của tam giác BCD, DK là đường cao của tam giác ACD. Chứng minh:
a)
b)
c)
Lời giải:
a) Vì hai mặt phẳng ( ABC) và ( ABD) cùng vuông góc với ( DBC) nên
Ta có:
b) Vì:
c) Ta có:
Bài 12. Cho tứ diện ABCD có AC= AD và BC= BD. Gọi I là trung điểm của CD.
a) Chứng minh: và
b) Xác định góc giữa hai mặt phẳng ( ACD) và ( BCD)
Lời giải:
a) Tam giác BCD cân tại B có I trung điểm đáy CD
(1)
Tam giác CAD cân tại A có I trung điểm đáy CD
(2)
Từ (1) và (2)
Suy ra: và
b) Góc giữa hai mặt phẳng ( ACD) và ( BCD) là
Bài 13. Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Tính của góc giữa một mặt bên và một mặt đáy.
Lời giải:
Gọi H là giao điểm của AC và BD.
+ Do S.ABCD là hình chóp tứ giác đều nên .
Ta có: .
Gọi M là trung điểm CD.
+ Tam giác SCD là cân tại S ; và tam giác CHD cân tại H ( tính chất hình vuông).
Từ giả thiết suy ra tam giác SCD là tam giác đều cạnh a có SM là đường trung tuyến .
Bài 14. Cho hình chóp tam giác S.ABC với SA vuông góc với (ABC) và SA = 3a. Diện tích tam giác ABC bằng 2a2; BC = a. Khoảng cách từ S đến BC bằng bao nhiêu?
Lời giải:
Kẻ AH vuông góc với BC
Ta có:
Lại có: nên BC ( SAH)
Suy ra: và khoảng cách từ S đến BC chính là SH .
+ Ta có tam giác vuông SAH vuông tại A nên ta có
Bài 15. Cho hình lăng trụ đứng ABC. A'B'C' có đáy là tam giác ABC vuông tại A có BC = 2a, . Khoảng cách từ AA' đến mặt phẳng (BCC'B') là:
Lời giải:
Ta có AA’//(BCC’B’) nên khoảng cách từ AA' đến mặt phẳng (BCC'B') cũng chính là khoảng cách từ A đến mặt phẳng (BCC'B').
Hạ .
Ta có
Vậy khoảng cách từ AA' đến mặt phẳng (BCC'B') bằng .
Bài 16. Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt đáy (ABCD). Tính khoảng cách từ B đến (SCD).
Lời giải:
Gọi H, M lần lượt là trung điểm của AB và CD .
Suy ra HM =1, và
Vì tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD) nên .
Vì AB//CD nên AB// (SCD).
Do đó d (B; (SCD)) = d(H; (SCD)) = HK với trong (SHM).
Ta có:
Bài 17. Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và đáy là tam giác vuông tại B, AB = SA= a. Gọi H là hình chiếu của A trên SB. Khoảng cách giữa AH và BC bằng:
Lời giải:
Ta có .
(nên ).
Do đó, d(BC, AH) = HB.
Tam giác SAB vuông cân tại A, AH là đường cao
Vậy .
Trắc nghiệm Toán 11 Bài: Ôn tập chương 3
Câu 1: Cho hình chóp có đáy ABCD là hình thang vuông tại A và B với . Hai mặt phẳng và cùng vuông góc với mặt phẳng đáy .Biết mặt phẳng hợp với một góc . tính khoảng cách giữa CD và SB.
A.
B.
C.
D.
Đáp án: A
Giải thích:
Gọi và
Kẻ hay
Mà
Gọi O là trung điểm của AD, ta có ABCD là hình vuông cạnh a
có trung tuyến ;
;
suy ra
.
Tính chất trọng tâm tam giác BCO
Kẻ mà
Trong tam giác SIC có
Vậy .
Câu 2. Cho hình chóp SABCD có đáy là hình bình hành với . Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là trọng tâm G của tam giác BCD, biết SG = 2a. Khoảng cách giữa hai đường thẳng AC và SB theo a là:
A. a
B. 2a
C.
D.
Đáp án: A
Giải thích:
Ta có ABCD là hình bình hành, AB = 2a, BC = , BD = nên ABCD là hình chữ nhật.
Dựng hình bình hành ACEB.
Ta có ACBE, AC
mà
vậy
.
Dựng lại có nên
Dựng
lại có nên
Ta có .
Tam giác ABC vuông tại B
suy ra
vậy .
Xét tam giác SGK vuông tại G,
đường cao có
Câu 3. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = 4a , BC = 3a, gọi I là trung điểm của AB hai mặt phẳng và cùng vuông góc với góc giữa hai mặt phẳng bằng . Khoảng cách giữa hai đường thẳng SB và AC theo a là:
A.
B.
C.
D.
Đáp án: A
Giải thích:
Ta có cùng vuông góc với mặt phẳng nên .
Dựng hình bình hành ACBE.
Ta có
mà vậy
.
Dựng
lại có nên .
Dựng
lại có nên
Kéo dài IK cắt AC tại D mà
Lại có
.
Góc giữa và bằng suy ra .
Ta có
Mà tam giác ABC vuông tại B suy ra
vậy .
Xét tam giác SID vuông tại I,
,suy ra
Xét tam giác SIK vuông tại I, đường cao IH có
Câu 4: Cho hình chóp tứ giác đều có cạnh đáy bằng a và góc hợp bởi một cạnh bên và mặt đáy bằng α. Khoảng cách từ tâm của đáy đến một cạnh bên bằng
A.
B.
C.
D.
Đáp án: D
Giải thích:
SO⊥(ABCD), O là tâm của hình vuông ABCD.
Kẻ OH⊥SD, khi đó d(O;SD)=OH, α=
OD=
Câu 5: Cho hình chóp S.ABC trong đó SA, AB, BC vuông góc với nhau từng đôi một. Biết SA = 3a, AB = , BC = . Khoảng cách từ B đến SC bằng
A.
B. 2a
C.
D.
Đáp án: B
Giải thích:
Vì SA, AB, BC vuông góc với nhau từng đôi một nên CB⊥SB
Kẻ BH⊥SC, khi đó d(B;SC)=BH
Ta có: SB=
Trong tam giác vuông SBC ta có:
Câu 6: Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách từ đỉnh A của hình lập phương đó đến đường thẳng CD' bằng
A.
B.
C.
D.
Đáp án: B
Giải thích:
Gọi M là trung điểm của CD′.
Do ABCD.A′B′C′D′ là hình lập phương nên tam giác ACD′ là tam giác đều cạnh
AM⊥CD′⇒d(A,CD′)=AM=
Câu 7: Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Khoảng cách từ đỉnh A của hình lập phương đó đến đường thẳng DB' bằng
A.
B.
C.
D.
Đáp án: D
Giải thích:
Gọi H là chân đường vuông góc hạ từ A xuống DB′.
Dễ thấy AD⊥(ABB′A′) nên
⇒ΔADB′ vuông đỉnh A.
Lại có AD=a;AB′=
Câu 8: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi I là trung điểm của SC. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?
(I): AI⊥SC
(II): (SBC)⊥(SAC)
(III): AI⊥BC
(IV): (ABI)⊥(SBC)
A. 1
B. 2
C. 3
D. 4
Đáp án: D
Giải thích:
Tam giác SAC đều có I là trung điểm của SC nên AI⊥SC.
⇒ Mệnh đề (I) đúng.
Gọi H là trung điểm AC suy ra SH⊥AC.
Mà (SAC)⊥(ABC) theo giao tuyến AC nên SH⊥(ABC) do đó SH⊥BC.
Hơn nữa theo giả thiết tam giác ABC vuông tại C nên BC⊥AC.
Từ đó suy ra BC⊥(SAC)⇒BC⊥AI.. Do đó mệnh đề (III) đúng.
Từ mệnh đề (I) và (III) suy ra mệnh đề (IV) đúng.
Ta có: ⇒BC⊥(SAC)
BC⊂(SBC)⇒(SBC)⊥(SAC)
Vậy mệnh đề (II) đúng.
Câu 9: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy. Gọi H,K lần lượt là hình chiếu của A trên SB, SC và I là giao điểm của HK với mặt phẳng (ABC). Khẳng định nào sau đây sai?
A. BC⊥AH.
B. (AHK)⊥(SBC).
C. SC⊥AI.
D. Tam giác IAC đều
Đáp án: D
Giải thích:
Ta có ⇒BC⊥(SAB)
⇒BC⊥AH. Do đó A đúng.
Lại có AH⊥SB. Từ đó suy ra AH⊥(SBC)⇒AH⊥SC. (1)
Lại có theo giả thiết SC⊥AK. (2)
Từ (1) và (2), suy ra
SC⊥(AHK)⇒(SBC)⊥(AHK). Do đó B đúng.
Ta có ⇒SC⊥AI. Do đó C đúng.
Dùng phương pháp loại trừ thì D là đáp án sai.
Câu 10: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Cạnh bên SA = và vuông góc với mặt đáy (ABC). Gọi là góc giữa hai mặt phẳng (SBC) và (ABC). Mệnh đề nào sau đây đúng?
A.
B.
C.
D.
Đáp án: D
Giải thích:
Gọi M là trung điểm của BC, suy ra AM⊥BC
Ta có ⇒BC⊥(SAM)
⇒BC⊥SM
Tam giác ABC đều cạnh a, suy ra trung tuyến AM=
Tam giác vuông SAM có sin
Xem thêm các bài tổng hợp lý thuyết Toán lớp 11 đầy đủ, chi tiết khác:
Lý thuyết Vectơ trong không gian
Lý thuyết Hai đường thẳng vuông góc
Lý thuyết Đường thẳng vuông góc với mặt phẳng
Xem thêm các chương trình khác:
- Giải sgk Hóa học 11 | Giải bài tập Hóa học 11 Học kì 1, Học kì 2 (Sách mới)
- Lý thuyết Hóa học 11(sách mới) | Kiến thức trọng tâm Hóa 11
- Giải sbt Hóa học 11 (sách mới) | Sách bài tập Hóa học 11
- Các dạng bài tập Hóa học lớp 11
- Giáo án Hóa học lớp 11 mới nhất
- Tóm tắt tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 11 (hay nhất) | Để học tốt Ngữ Văn 11 (sách mới)
- Soạn văn 11 (ngắn nhất) | Để học tốt Ngữ văn 11 (sách mới)
- Tác giả tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Văn mẫu 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 11 (thí điểm)
- Giải sgk Tiếng Anh 11 | Giải bài tập Tiếng anh 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Tiếng Anh 11 (sách mới) | Sách bài tập Tiếng Anh 11
- Giải sbt Tiếng Anh 11 (thí điểm)
- Giải sgk Lịch sử 11 | Giải bài tập Lịch sử 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Lịch Sử 11(sách mới) | Kiến thức trọng tâm Lịch Sử 11
- Giải Tập bản đồ Lịch sử 11
- Giải sgk Vật Lí 11 | Giải bài tập Vật lí 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Vật Lí 11 (sách mới) | Sách bài tập Vật Lí 11
- Lý thuyết Vật Lí 11 (sách mới) | Kiến thức trọng tâm Vật Lí 11
- Các dạng bài tập Vật Lí lớp 11
- Giáo án Vật lí lớp 11 mới nhất
- Giải sgk Sinh học 11 | Giải bài tập Sinh học 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Sinh học 11 (sách mới) | Kiến thức trọng tâm Sinh 11
- Giải sgk Giáo dục công dân 11
- Lý thuyết Giáo dục công dân 11
- Lý thuyết Địa Lí 11 (sách mới) | Kiến thức trọng tâm Địa lí 11
- Giải Tập bản đồ Địa Lí 11
- Giải sgk Giáo dục quốc phòng - an ninh 11