Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh bằng a, góc BAD bằng 60 độ

Lời giải Bài 7.21 trang 34 SBT Toán 11 Tập 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 9,433 10/12/2024


Giải SBT Toán 11 Bài 25: Hai mặt phẳng vuông góc

Bài 7.21 trang 34 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh bằng a, góc BAD bằng 60°. Kẻ OH vuông góc với SC tại H. Biết SA (ABCD) và SA = a62 . Chứng minh rằng:

a) (SBD) (SAC);

b) (SBC) (BDH);

c) (SBC) (SCD).

Lời giải:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh bằng a

a) Ta có SA (ABCD) nên SA BD mà BD AC (do ABCD là hình thoi).

Do đó BD (SAC) mà BD (SBD) nên (SBD) (SAC).

b) Vì BD (SAC) nên BD SC, mà SC OH nên SC (BDH).

Vì SC (SBC) nên (SBC) (BDH).

c) Ta có tam giác ABD có AB = AD = a và BAD^ = 60o nên tam giác ABD đều.

Suy ra BD = AB = AD = a.

Vì ABCD là hình thoi nên AC là tia phân giác của BAD^BAD^ = 60o nên DAO^ = 30o.

Xét tam giác ADO vuông tại O, có AO = AD . cos30° = a32 . Do đó AC = a3.

Xét tam giác SAC vuông tại A, có SC = SA2+AC2=6a24+3a2=3a22 .

CHO đồng dạng CAS (g.g) nên HOAS=COCSCO.ASCS=a2=BD2 .

Do đó, tam giác BDH vuông tại H, suy ra BHD^ = 90o.

Mà BH SC, DH SC (do SC (BDH)) và (SBC) ∩ (SCD) = SC,

BH ⊂ (SBC), DH ⊂ (SCD).

Do đó góc giữa hai mặt phẳng (SBC) và (SCD) là góc giữa hai đường thẳng BH và DH. Mà (DH, BH) = BHD^ = 90o.

Vậy (SBC) (SCD).

*Phương pháp giải:

- Định lí 1.

Điều kiện cần và đủ để hai mặt phẳng vuông góc với nhau là mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.

*Lý thuyết:

1. Định nghĩa.

Hai mặt phẳng gọi là vuông góc với nhau nếu góc giữa hai mặt phẳng đó là góc vuông.

Nếu hai mặt phẳng (α) và (β) vuông góc với nhau ta kí hiệu: (α)(β).

2. Các định lí.

- Định lí 1.

Điều kiện cần và đủ để hai mặt phẳng vuông góc với nhau là mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.

- Hệ quả 1.

Nếu hai mặt phẳng vuông góc với nhau thì bất cứ đường thẳng nào nằm trong mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.

- Hệ quả 2.

Cho hai mặt phẳng (α) và (β) vuông góc với nhau. Nếu từ một điểm thuộc mặt phẳng (α) ta dựng một đường thẳng vuông góc với mặt phẳng (β) thì đường thẳng này nằm trong mặt phẳng (α).

Xem thêm

Chuyên đề Hai mặt phẳng vuông góc () - Toán 1

1 9,433 10/12/2024


Xem thêm các chương trình khác: