Sách bài tập Toán 11 Bài 15 (Kết nối tri thức): Giới hạn của dãy số
Với giải sách bài tập Toán 11 Bài 15: Giới hạn của dãy số sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 15.
Giải SBT Toán 11 Bài 15: Giới hạn của dãy số
Bài 5.1 trang 77 SBT Toán 11 Tập 1: Tính các giới hạn sau:
Lời giải:
a) .
b) .
Bài 5.2 trang 78 SBT Toán 11 Tập 1: Tính các giới hạn sau:
d) .
Lời giải:
a)
.
b)
.
c) .
d) .
Bài 5.3 trang 78 SBT Toán 11 Tập 1: Cho với a, b là các số thực thỏa mãn |a| < 1, |b| < 1. Tính .
Lời giải:
Áp dụng công thức tính tổng n số hạng đầu của cấp số nhân, ta có:
.
Do đó,(do |a| < 1, |b| < 1).
Bài 5.4 trang 78 SBT Toán 11 Tập 1: Tính .
Ta có 1, 3, 5, ..., 2n – 1 là một cấp số cộng gồm n số hạng và có số hạng đầu u1 = 1, công sai d = 2.
Khi đó, 1 + 3 + 5 + ... + (2n – 1) = .
Do đó, .
Bài 5.5 trang 78 SBT Toán 11 Tập 1: Tính tổng + …
Nhận thấy S là tổng của cấp số nhân lùi vô hạn (un) với số hạng đầu u1 = – 1 và công bội q = .
Do đó, .
Bài 5.6 trang 78 SBT Toán 11 Tập 1: Viết các số thập phân vô hạn tuần hoàn sau dưới dạng phân số:
a) 1,(03) = 1 + 0,03 + 0,0003 + ... + 0,00...03 + ...
.
b) 3,(23) = 3 + 0,23 + 0,0023 + ... + 0,00...23 + ...
Bài 5.7 trang 78 SBT Toán 11 Tập 1: Cho dãy số (un) với . Tính .
Ta có .
Mà khi n → +∞ nên .
b) Tính tổng s1 + s2 + ... + sn + ...
Lời giải:
a)
Theo cách xác định tam giác A2B2C2, ta có s2 = s1.
Tương tự, s3 = s2, ...., .
Vậy .
b) Ta có s1 + s2 + ... + sn + ... là tổng của cấp số nhân lùi vô hạn có số hạng đầu u1 = 3 và công bội q = . Do đó
s1 + s2 + ... + sn + ... = .
Bài 5.9 trang 78 SBT Toán 11 Tập 1: Cho dãy số (un) với u1 = 2, , n ≥ 1. Đặt vn = un + 1 – un.
a) Tính v1 + v2 + ... + vn theo n.
b) Tính un theo n.
c) Tính .
Lời giải:
a) Ta có vn = un + 1 – un = .
Do đó, v1 + v2 + ... + vn =
.
b) Ta có v1 + v2 + ... + vn = (u2 – u1) + (u3 – u2) + ... + (un + 1 – un)
= un + 1 – u1 = .
Mà theo câu a có v1 + v2 + ... + vn = .
Do đó, . Từ đó suy ra .
c) Ta có
.
Bài 5.10 trang 78 SBT Toán 11 Tập 1: Cho dãy số (un) có tính chất . Tính
Ta có , mà khi n → +∞ nên .
Mặt khác,
.
Vậy = 1.
Lý thuyết Giới hạn của dãy số
1. Giới hạn hữu hạn của dãy số
Ta nói dãy số có giới hạn 0 khi n dần tới dương vô cực, nếu có thể nhỏ hơn một số dương bé tùy ý , kể tử một số hạng nào đó trở đi, kí hiệu hay khi .
Ta nói dãy số có giới hạn là số thực a khi n dần tới dương vô cực, nếu , kí hiệu hay khi .
* Chú ý: Nếu (c là hằng số) thì
2. Định lí về giới hạn hữu hạn của dãy số
a, Nếu thì
b, Nếu thì với mọi n và thì và .
3. Tổng của cấp số nhân lùi vô hạn
4. Giới hạn vô cực của dãy số
Dãy số được gọi là có giới hạn khi nếu có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu hay khi .
Dãy số được gọi là có giới hạn khi nếu , kí hiệu hay khi .
*Quy tắc:
Nếu và (hoặc) thì .
Nếu và thì .
Nếu và thì .
Xem thêm lời giải SBT Toán lớp 11 bộ sách Kết nối tri thức hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Kết nối tri thức - hay nhất
- Văn mẫu lớp 11 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 11 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn 11 - Kết nối tri thức
- Giải SBT Ngữ văn 11 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn 11 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 11 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Kết nối tri thức
- Soạn văn 11 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 11 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 11 – Global success
- Giải sbt Tiếng Anh 11 - Global Success
- Trọn bộ Từ vựng Tiếng Anh 11 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 11 Global success
- Giải sgk Vật lí 11 – Kết nối tri thức
- Lý thuyết Vật lí 11 – Kết nối tri thức
- Giải sbt Vật lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Vật lí 11 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 11 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Hóa học 11 – Kết nối tri thức
- Lý thuyết Hóa 11 - Kết nối tri thức
- Giải sbt Hóa học 11 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 11 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 11 – Kết nối tri thức
- Lý thuyết Sinh học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Sinh học 11 – Kết nối tri thức
- Giải sbt Sinh học 11 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Kết nối tri thức
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Kết nối tri thức
- Lý thuyết Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sbt Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sgk Lịch sử 11 – Kết nối tri thức
- Giải Chuyên đề học tập Lịch sử 11 – Kết nối tri thức
- Lý thuyết Lịch sử 11 - Kết nối tri thức
- Giải sbt Lịch sử 11 – Kết nối tri thức
- Giải sgk Địa lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Địa lí 11 – Kết nối tri thức
- Lý thuyết Địa lí 11 - Kết nối tri thức
- Giải sbt Địa lí 11 – Kết nối tri thức
- Giải sgk Công nghệ 11 – Kết nối tri thức
- Lý thuyết Công nghệ 11 - Kết nối tri thức
- Giải sbt Công nghệ 11 – Kết nối tri thức
- Giải sgk Tin học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Tin học 11 – Kết nối tri thức
- Lý thuyết Tin học 11 - Kết nối tri thức
- Giải sbt Tin học 11 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng an ninh 11 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 11 – Kết nối tri thức