Sách bài tập Toán 11 Bài 26 (Kết nối tri thức): Khoảng cách
Với giải sách bài tập Toán 11 Bài 26: Khoảng cách sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 26.
Giải SBT Toán 11 Bài 26: Khoảng cách
a) Giữa hai đường thẳng AB và C'D'.
b) Giữa đường thẳng AC và mặt phẳng (A'B'C'D').
c) Từ điểm A đến đường thẳng B'D'.
d) Giữa hai đường thẳng AC và B'D'.
Lời giải:
a) Do ABCD.A'B'C'D' là hình lập phương nên các mặt là hình vuông.
Vì ABCD là hình vuông nên AB BC mà AB BB' (do BB' (ABCD)), từ đó suy ra AB (BCC'B'), suy ra BC' AB.
Vì A'B'C'D' là hình vuông nên C'D' B'C' mà CC' C'D' (do CC' (A'B'C'D')) nên C'D' (BCC'B'), suy ra BC' C'D'.
Xét tam giác BB'C' vuông tại B', có BC' = .
Vì BC' AB và BC' C'D' nên d(AB, C'D') = BC' = .
b) Ta có AA' // CC' và AA' = CC' (do AA'; CC' cùng song song và bằng BB').
Do đó ACC'A' là hình bình hành, suy ra AC // A'C'. Do đó AC // (A'B'C'D').
Vì AC // (A'B'C'D') nên d(AC, (A'B'C'D')) = d(A, (A'B'C'D')) = AA' = a.
c) Gọi O' là giao điểm của A'C' và B'D'.
Vì AA' (A'B'C'D') nên AA' B'D'.
Vì A'B'C'D' là hình vuông nên A'C' B'D' mà AA' B'D' nên B'D' (AA'C'C), suy ra AO' B'D'.
Xét tam giác A'B'C' vuông tại B', có: A'C' = .
Do A'B'C'D' là hình vuông và O' là giao điểm của A'C' và B'D' nên O' là trung điểm của A'C'. Do đó A'O' = .
Xét tam giác AA'O' vuông tại A', có AO' = .
Vì AO' B'D' nên d(A, B'D') = AO' = .
d) Vì AC // A'C' nên AC // ((A'B'C'D')) mà B'D' (A'B'C'D').
Do đó d(AC, B'D') = d(AC, (A'B'C'D')) = d(A, (A'B'C'D')) = AA' = a.
a) Từ điểm B đến mặt phẳng (SAC).
b) Từ điểm A đến mặt phẳng (SBC).
c) Giữa hai đường thẳng AB và SC.
Lời giải:
a) Kẻ BH AC tại H.
Vì SA (ABC) nên SA BH mà BH AC. Suy ra, BH (SAC).
Vì ABC là tam giác đều cạnh a có BH là đường cao nên BH = .
Do đó d(B, (SAC)) = BH = .
b) Kẻ AM BC tại M, AK SM tại K
Do SA (ABC) nên SA BC mà AM BC nên BC (SAM), suy ra BC AK.
Vì AK SM và BC AK thì AK (SBC).
Suy ra d(A, (SBC)) = AK.
Tam giác ABC đều cạnh bằng a có AM là đường cao nên AM = .
Vì SA (ABC) nên SA AM.
Xét tam giác SAM vuông tại A, có AK = 2a. Vậy d(A, (SBC)) = 2a.
c) Dựng hình bình hành ABCD thì AB // CD nên AB // (SCD) và mặt phẳng (SCD) chứa SC nên d(AB, SC) = d(AB, (SCD)). Mà d(AB, (SCD)) = d(A, (SCD)).
Kẻ AN DC tại N, kẻ AQ SN tại Q
Vì ADC là tam giác đều, AN là đường cao nên AN = .
Vì SA (ABC) nên SA (ABCD), suy ra SA DC mà AN DC nên DC (SAN).
Vì DC (SAN) nên DC AQ mà AQ SN nên AQ (SDC).
Khi đó d(A, (SCD)) = AQ.
Xét tam giác SAN vuông tại A, có
. Vậy d(AB, SC) = .
a) Từ điểm S đến mặt phẳng (ABC).
b) Từ điểm B đến mặt phẳng (SAC).
c) Giữa hai đường thẳng AB và SC.
Lời giải:
a) Kẻ SH BC tại H. Do (SBC) (ABC) và (SBC) (ABC) = BC nên SH (ABC). Suy ra d(S, (ABC)) = SH.
Vì tam giác SBC là tam giác đều cạnh a, SH là đường cao nên SH = .
Vậy d(S, (ABC)) = .
b) Do tam giác SBC đều và SH BC nên SH đồng thời là trung tuyến hay H là trung điểm của BC.
Kẻ HK CA tại K mà SH AC (do SH (ABC)). Suy ra AC (SHK).
Kẻ HQ SK tại Q mà AC HQ (do AC (SHK)). Do đó HQ (SAC).
Khi đó d(H, (SAC)) = HQ.
Xét tam giác vuông ABC vuông tại A, có AB = BC . cos 60° = .
Xét tam giác ABC vuông tại A, có HK // AB (vì cùng vuông góc với AC) mà H là trung điểm của BC nên K là trung điểm của AC. Do đó HK là đường trung bình của tam giác ABC. Suy ra HK = .
Xét tam giác SHK vuông tại H, có .
.
Lại có H là trung điểm của BC nên d(B, (SAC)) = 2 . d(H, (SAC)) = 2HQ = .
c) Dựng hình bình hành ABMC mà nên ABMC là hình chữ nhật.
Do ABMC là hình chữ nhật nên AB // MC.
Khi đó AB // (SCM) và mặt phẳng (SCM) chứa SC nên
d(AB, SC) = d(AB, (SCM)) = d(B, (SCM)) = 2d(H, (SCM)).
Kẻ HN CM tại N.
Vì SH (ABC) nên SH (ABMC), suy ra SH MC.
Vì SH MC và HN CM nên CM (SHN).
Kẻ HE SN tại E.
Vì CM (SHN) nên CM HE mà HE SN nên HE (SCM).
Suy ra d(H, (SCM)) = HE.
Xét tam giác vuông ABC vuông tại A, có AC = BC . sin 60° = .
Xét tam giác BCM có HN là đường trung bình nên HN = .
Xét tam giác SHN vuông tại H, có
.
Vậy d(AB, SC) = 2HE .
a) Từ điểm A đến mặt phẳng (BDD'B').
b) Giữa hai đường thẳng BD và CD'.
Lời giải:
a) Kẻ AH BD tại H.
Do D'D (ABCD) nên D'D AH mà AH BD, suy ra AH (BDD'B').
Suy ra d(A, (BDD'B')) = AH.
Xét tam giác ADB vuông tại A, có
. Vậy d(A, (BDD'B')) = .
b) Có BC // A'D' và BC = A'D' (do BC, A'D' cùng song song và bằng AD).
Do đó BCD'A' là hình bình hành, suy ra CD' // BA', suy ra CD' // (A'BD).
Ta có CD' // (A'BD) nên d(BD, CD') = d(CD', (A'BD)) = d(C, (A'BD)).
Do ABCD là hình chữ nhật nên AC và BD cắt nhau tại trung điểm của AC nên
d(C, (A'BD)) = d(A, (A'BD)).
Kẻ AK A'H tại K.
Vì AA' (ABCD) nên A'A BD mà AH BD nên BD (A'AH), suy ra BD AK.
Vì BD AK và AK A'H nên AK (A'BD). Suy ra d(A, (A'BD)) = AK.
Vì AA' (ABCD) nên AA' AH.
Xét tam giác A'AH vuông tại A, có
. Vậy d(BD, CD') = .
a) Từ điểm A đến đường thẳng B'C'.
b) Giữa hai đường thẳng BC và AB'.
Lời giải:
a) Hạ AH B'C' tại H. Khi đó d(A, B'C') = AH.
Vì ABC.A'B'C' là lăng trụ đứng nên các mặt bên là hình chữ nhật, do đó AA' = BB' = CC' = a, AB = A'B' = a; AC = A'C' = a, BC = B'C'.
Xét tam giác ABB' vuông tại B, có AB' = .
Xét tam giác ACA' vuông tại A, có A'C = .
Suy ra AC' = a.
Xét tam giác ABC vuông tại A, có BC = .
Suy ra B'C' = a.
Do đó AB' = AC' = B'C' = a. Suy ra tam giác AB'C' đều.
Xét tam giác AB'C' đều có AH là đường cao nên AH = .
Vậy d(A, B'C') = .
b) Do BCC'B' là hình chữ nhật nên BC // B'C'.
Suy ra BC // (AB'C') nên d(BC, AB') = d(BC, (AB'C')) = d(C, (AB'C')).
Do ACC'A' là hình chữ nhật nên CA' cắt AC' tại trung điểm của CA' do đó
d(C, (AB'C')) = d(A', (AB'C')).
Đặt d(A', (AB'C')) = h. Áp dụng kết quả bài 7.7 trang 28 SBT Toán 11 tập 2, ta có:
.
Vậy d(BC, AB') = .
Gọi AB là giao tuyến của mặt phẳng mái nhà và mặt phẳng nằm ngang, AD là đường thẳng nằm trên mái nhà và vuông góc với AB, đường thẳng DE là chiếc cột vuông góc với mái nhà, đường thẳng AE nằm trên mặt phẳng nằm ngang. Khi đó tam giác ADE vuông tại D, đường thẳng AE là hình chiếu vuông góc của DE trên mặt phẳng nằm ngang. Khi đó góc giữa đường thẳng DE (chiếc cột) và mặt phẳng nằm ngang bằng góc giữa hai đường thẳng DE và AE, mà (DE, AE) = .
Xét tam giác ADE vuông tại D có = 30o mà
Vậy góc giữa đường thẳng DE (chiếc cột) và mặt phẳng nằm ngang bằng 60°.
Lý thuyết Khoảng cách
1. Khoảng cách từ một điểm đến một đường thẳng, đến một mặt phẳng
- Khoảng cách từ một điểm M đến một đường thẳng a, kí hiệu là d(M, a), là khoảng cách giữa M và hình chiếu H của M trên a.
- Khoảng cách từ một điểm M đến một mặt phẳng (P), kí hiệu d(M, (P)), là khoảng cách giữa M và hình chiếu H của M trên (P).
Chú ý: d(M, a) = 0 khi và chỉ khi khi và chỉ khi .
Nhận xét: Khoảng cách từ M đến đường thẳng a (mặt phẳng (P)) là khoảng cách nhỏ nhất giữa M và một điểm thuộc a (thuộc (P)).
Chú ý: Khoảng cách từ đỉnh đến mặt phẳng chứa mặt đáy của một hình chóp được gọi là chiều cao của hình chóp đó.
2. Khoảng cách giữa các đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song
- Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a, kí hiệu d(a, (P)), là khoảng cách từ một điểm bất kì trên a đến (P).
- Khoảng cách giữa hai mặt phẳng song song (P) và (Q), kí hiệu d((P), (Q)), là khoảng cách từ một điểm bất kì thuộc mặt phẳng này đến mặt phẳng kia.
- Khoảng cách giữa hai đường thẳng song song m và n, kí hiệu d(m, n), là khoảng cách từ một điểm thuộc đường thẳng này đến đường thẳng kia.
Chú ý: Khoảng cách giữa hai đáy của một hình lăng trụ được gọi là chiều cao của hình lăng trụ đó.
3. Khoảng cách giữa hai đường thẳng chéo nhau
Đường thẳng cắt hai đường thẳng chéo nhau a, b và vuông góc với cả hai đường thẳng đó được gọi là đường vuông góc chung của a và b.
Nếu đường vuông góc chung cắt a, b tương ứng tại M, N thì độ dài đoạn thẳng MN được gọi là khoảng cách giữa hai đường thẳng chéo nhau a, b.
Nhận xét:
- Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó đến mặt phẳng song song với nó và chứa đường thẳng còn lại.
- Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song, tương ứng chứa hai đường thẳng đó.
Sơ đồ tư duy Khoảng cách
Xem thêm lời giải SBT Toán 11 sách Kết nối tri thức hay, chi tiết khác:
Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Kết nối tri thức - hay nhất
- Văn mẫu lớp 11 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 11 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn 11 - Kết nối tri thức
- Giải SBT Ngữ văn 11 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn 11 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 11 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Kết nối tri thức
- Soạn văn 11 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 11 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 11 – Global success
- Giải sbt Tiếng Anh 11 - Global Success
- Trọn bộ Từ vựng Tiếng Anh 11 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 11 Global success
- Giải sgk Vật lí 11 – Kết nối tri thức
- Lý thuyết Vật lí 11 – Kết nối tri thức
- Giải sbt Vật lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Vật lí 11 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 11 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Hóa học 11 – Kết nối tri thức
- Lý thuyết Hóa 11 - Kết nối tri thức
- Giải sbt Hóa học 11 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 11 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 11 – Kết nối tri thức
- Lý thuyết Sinh học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Sinh học 11 – Kết nối tri thức
- Giải sbt Sinh học 11 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Kết nối tri thức
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Kết nối tri thức
- Lý thuyết Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sbt Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sgk Lịch sử 11 – Kết nối tri thức
- Giải Chuyên đề học tập Lịch sử 11 – Kết nối tri thức
- Lý thuyết Lịch sử 11 - Kết nối tri thức
- Giải sbt Lịch sử 11 – Kết nối tri thức
- Giải sgk Địa lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Địa lí 11 – Kết nối tri thức
- Lý thuyết Địa lí 11 - Kết nối tri thức
- Giải sbt Địa lí 11 – Kết nối tri thức
- Giải sgk Công nghệ 11 – Kết nối tri thức
- Lý thuyết Công nghệ 11 - Kết nối tri thức
- Giải sbt Công nghệ 11 – Kết nối tri thức
- Giải sgk Tin học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Tin học 11 – Kết nối tri thức
- Lý thuyết Tin học 11 - Kết nối tri thức
- Giải sbt Tin học 11 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng an ninh 11 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 11 – Kết nối tri thức