Sách bài tập Toán 11 Bài 27 (Kết nối tri thức): Thể tích

Với giải sách bài tập Toán 11 Bài 27: Thể tích sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 27.

1 552 29/10/2024


Giải SBT Toán 11 Bài 27: Thể tích

Bài 7.33 trang 41 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có SA (ABC); AB = a, AC = a2SBA^=60°, BAC^=45°. Tính theo a thể tích khối chóp S.ABC.

Lời giải:

Cho hình chóp S.ABC có SA vuông góc (ABC)

Xét tam giác SAB vuông tại A, có SA = AB . tan60° = a3.

SABC=12ABACsinBAC^=12aa2sin45°=a22.

Vậy VS.ABC=13SABCSA=a336.

Bài 7.34 trang 41 SBT Toán 11 Tập 2: Cho khối chóp đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a, góc giữa mặt phẳng (SCD) và mặt phẳng (ABCD) bằng 60°. Tính theo a thể tích khối chóp S.ABCD.

Lời giải:

Cho khối chóp đều S.ABCD có đáy ABCD là hình vuông cạnh bằng a

Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên O là trung điểm của AC và BD.

Vì S.ABCD là hình chóp đều nên SO (ABCD).

Kẻ OM CD tại M. Vì SO (ABCD) nên SO CD mà OM CD nên CD (SOM), suy ra SM CD. Do đó góc giữa mặt phẳng (SCD) và mặt phẳng (ABCD) bằng góc giữa hai đường thẳng OM và SM, mà (OM,SM) = SMO^. Do đó SMO^ = 60o.

Xét tam giác BCD có OM // BC (vì cùng vuông góc với CD) mà O là trung điểm của BD nên M là trung điểm của CD. Do đó OM là đường trung bình của tam giác BCD nên OM = BC2=a2.

Xét tam giác SOM vuông tại O có SO = OM.tanSMO^ = a2.tan60o = a32.

Vậy VS.ABCD=13SABCDSO=13a2a32=a336.

Bài 7.35 trang 41 SBT Toán 11 Tập 2: Cho hình lăng trụ ABC.A'B'C' có A'B'C' và AA'C' là hai tam giác đều cạnh a. Biết (ACC'A') (A'B'C'). Tính theo a thể tích khối lăng trụ ABC.A'B'C'.

Lời giải:

Cho hình lăng trụ ABC.A'B'C' có A'B'C' và AA'C' là hai tam giác đều cạnh a

Kẻ AH A'C' tại H mà (ACC'A') (A'B'C') và (ACC'A') (A'B'C') = A'C' nên

AH (A'B'C').

Tam giác A'B'C' là tam giác đều cạnh a nên SA'B'C'=a234.

Tam giác AA'C' là tam giác đều cạnh a, AH là đường cao nên AH = a32.

Vậy VABC.A'B'C'=SA'B'C'AH=a234a32=3a38.

Bài 7.36 trang 41 SBT Toán 11 Tập 2: Cho tứ diện OABC có OA = OB = OC = a và AOB^=90°; BOC^=60°; COA^=120°. Tính theo a thể tích khối tứ diện OABC.

Lời giải:

Cho tứ diện OABC có OA = OB = OC = a và góc AOB = 90 độ

Xét tam giác OAB vuông tại O, có AB = OA2+OB2=a2+a2=a2.

Xét tam giác BOC có OB = OC và BOC^=60° nên tam giác BOC là tam giác đều.

Do đó BC = a.

Áp dụng định lí Côsin trong tam giác OAC có:

AC2=OA2+OC2-2.OA.OC.cosAOC^

= a2+a2+2.a2.12 = 3a2 AC2=3a2AC=a3

AB2+BC2=2a2+a2=3a2. Do đó AC2 = AB2 + BC2.

Vì AC2 = AB2 + BC2 nên tam giác ABC vuông tại B.

Do đó SABC=ABBC2=a2a2=a222.

Kẻ OH (ABC) tại H.

Vì OA = OB = OC nên HA = HB = HC.

Khi đó, H là trung điểm của AC nên AH = a32.

Xét tam giác OAH vuông tại H, có OH = OA2AH2=a23a24=a2.

Vậy VOABC=13SABCOH=13a222a2=a3212.

Bài 7.37 trang 41 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, biết SO (ABCD), AC = 2a3, BD = 2a và khoảng cách từ điểm A đến mặt phẳng (SBC) bằng a32. Tính theo a thể tích khối chóp S.ABCD.

Lời giải:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, biết SO vuông góc (ABCD)

Kẻ OM BC tại M mà BC SO (do SO (ABCD)) nên BC (SOM).

Kẻ OH SM tại H mà OH BC (do BC (SOM)) nên OH (SBC).

Suy ra d(O, (SBC)) = OH.

Do ABCD là hình thoi tâm O nên O là trung điểm của AC, do đó

d(A, (SBC)) = 2 . d(O, (SBC)) = 2 . OH = a32.

Suy ra OH = a34.

Vì ABCD là hình thoi tâm O nên O là trung điểm của AC, BD nên OB = BD2 = a;

OC = AC2 = a3.

Do ABCD là hình thoi nên AC BD.

Xét tam giác OBC vuông tại O, OM là đường cao: ta có 1OM2=1OB2+1OC2

=1a2+13a2=43a2OM=a32.

Vì SO (ABCD) nên SO OM.

Xét tam giác SOM vuông tại O, OH là đường cao, ta có 1OH2=1SO2+1OM2

163a2=1SO2+43a21SO2=163a243a2=4a2SO=a2.

Vậy VS.ABCD=13SABCDSO=1312.AC.BD.SO = 13122a32aa2=a333.

Bài 7.38 trang 41 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có SA (ABC), SA = a và đáy ABC là tam giác vuông tại A, AB = a, AC = a3. Kẻ AM vuông góc với SB tại M, AN vuông góc với SC tại N. Tính theo a thể tích khối chóp S.AMN.

Lời giải:

Hướng dẫn. Ta chứng minh được công thức tỉ số khoảng cách sau:

Cho hình chóp S.ABC. Trên các đoạn thẳng SA, SB, SC lần lượt lấy ba điểm A', B', C' khác với S.

Cho hình chóp S.ABC có SA vuông góc (ABC), SA = a

Khi đó ta có: VS.A'B'C'VS.ABC=SA'SASB'SBSC'SC.

Áp dụng công thức trên với bài tập 7.38, ta có VS.AMNVS.ABC=SASASMSBSNSC=SMSBSNSC.

Trình bày lời giải

Cho hình chóp S.ABC có SA vuông góc (ABC), SA = a

Ta có VS.ABC=13SABCSA=1312ABACSA=1312a3aa=a336.

Vì SA (ABC) nên SA AB hay tam giác SAB vuông tại A mà SA = AB = a nên tam giác SAB vuông cân tại A.

Vì tam giác SAB vuông cân tại A, AM là đường cao nên AM đồng thời là trung tuyến, suy ra M là trung điểm SB. Do đó SMSB=12.

Vì SA (ABC) nên SA AC hay tam giác SAC vuông tại A

Vì tam giác SAC vuông tại A nên SC=SA2+AC2=a2+3a2=2a.

Xét tam giác SAC vuông tại A, đường cao AN có SNSC=SNSCSC2=SA2SC2=14.

Do đó VS.AMNVS.ABC=SMSBSNSC=18VS.AMN=18VS.ABCVS.AMN=18a336=a3348.

Vậy VS.AMN=a3348 .

Bài 7.39 trang 41 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có SA (ABC) và BAC^=60°, biết diện tích các tam giác ABC, SAB và SAC lần lượt là 33; 9; 12. Tính thể tích khối chóp S.ABC.

Lời giải:

Cho hình chóp S.ABC có SA vuông góc (ABC) và góc BAC = 60 độ

Đặt SA = a, AB = b, AC = c.

Khi đó VS.ABC=13SABCSA=1312bcsin60°a=abc312.

Theo đề bài, SABC=12bcsin60°=33bc=12 .

Do SA (ABC) nên SA AB hay tam giác SAB vuông tại A.

Khi đó SSAB=ab2=9ab=18.

Do SA (ABC) nên SA AC hay tam giác SAC vuông tại A.

Khi đó SSAC=ac2=12ac=24.

Do đó (abc)2 = 12 × 18 × 24 = 722, suy ra abc = 72.

Vậy VS.ABC=72312=63 .

Bài 7.40 trang 41 SBT Toán 11 Tập 2: Người ta cắt bỏ bốn hình vuông cùng kích thước ở bốn góc của một tấm tôn hình vuông có cạnh 1 m để gò lại thành một chiếc thùng có dạng hình hộp chữ nhật không nắp. Hỏi cạnh của các hình vuông cần bỏ đi có độ dài bằng bao nhiêu để thùng hình hộp nhận được có thể tích lớn nhất.

Lời giải:

Người ta cắt bỏ bốn hình vuông cùng kích thước

Gọi x (m) là độ dài cạnh hình vuông nhỏ tại mỗi góc của tấm tôn được cắt bỏ đi (với 0<x<12). Thể tích hình hộp chữ nhật nhận được là:

V = (1-2x)2.x = 14.(1-2x).(1-2x).4x14.12x+12x+4x33 = 227 .

Dấu “=” xảy ra khi 1 – 2x = 4x x = 16.

Vậy để thể tích chiếc thùng là lớn nhất thì các cạnh của hình vuông được cắt bỏ đi là 16 m.

Lý thuyết Thể tích

Phần không gian được giới hạn bởi hình chóp, hình chóp cụt đều, hình lăng trụ, hình hộp tương ứng được gọi là khối chóp, khối chóp cụt đều, khối lăng trụ, khối hộp. Đỉnh, mặt, cạnh, đường cao của các khối hình đó lần lượt là đỉnh, mặt, cạnh, đường cao của hình chóp, hình chóp cụt đều, hình lăng trụ, hình hộp tương ứng.

- Thể tích của khối chóp có diện tích đáy S và đường cao h là V=13.h.S.

- Thể tích của khối chóp cụt đều có diện tích đáy lớn S, diện tích đáy bé S’ và chiều cao h là V=13.h.(S+S+S.S).

- Thể tích của khối lăng trụ có diện tích đáy S và chiều cao h là V=h.S.

Lý thuyết Thể tích (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 1)

Nhận xét:

- Thể tích khối tứ diện bằng một phần ba tích của chiều cao từ một đỉnh và diện tích mặt đối diện với đỉnh đó.

- Thể tích của khối hộp bằng tích của diện tích một mặt và chiều cao của khối hộp tương ứng với mặt đó.

Sơ đồ tư duy Thể tích

Lý thuyết Thể tích (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 2)

Xem thêm lời giải SBT Toán 11 sách Kết nối tri thức hay, chi tiết khác:

Bài tập cuối chương 7

Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập

Bài 29: Công thức cộng xác suất

Bài 30: Công thức nhân xác suất cho hai biến cố độc lập

Bài tập cuối chương 8

1 552 29/10/2024


Xem thêm các chương trình khác: