Sách bài tập Toán 11 Bài 16 (Kết nối tri thức): Giới hạn của hàm số
Với giải sách bài tập Toán 11 Bài 16: Giới hạn của hàm số sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 16.
Giải SBT Toán 11 Bài 16: Giới hạn của hàm số
Bài 5.11 trang 83 SBT Toán 11 Tập 1: Cho hàm số . Hàm số f(x) có giới hạn khi x → 1 không?
Ta có và .
Vậy nên hàm số f(x) có giới hạn khi x → 1.
Bài 5.12 trang 83 SBT Toán 11 Tập 1: Tính các giới hạn sau:
c) ;
d) .
Lời giải:
a)
.
b)
.
c) .
Vì và x – 2 > 0 khi x → 2+, nên .
Vậy .
d)
Vì , và x < 0 nên .
Bài 5.13 trang 83 SBT Toán 11 Tập 1: Tìm a để hàm số có giới hạn khi x → 3.
Ta có ;
.
Do đó, hàm số f(x) có giới hạn khi x → 3 khi , tức là 9 + 3a = 28.
Suy ra .
Bài 5.14 trang 83 SBT Toán 11 Tập 1: Tìm các số thực a và b sao cho .
Lời giải:
Vì x = 1 là nghiệm của đa thức x2 – 3x + 1 nên đa thức 2x2 – ax + 1 phải có nghiệm x = 1. Khi đó, 2 . 12 – a . 1 + 1 = 0, suy ra a = 3.
Do đó,
.
Vậy b = – 1.
Bài 5.15 trang 83 SBT Toán 11 Tập 1: Cho hàm số . Tính:
Lời giải:
a) = .
b) = .
Bài 5.16 trang 83 SBT Toán 11 Tập 1: Tính giới hạn .
Ta có
Bài 5.17 trang 83 SBT Toán 11 Tập 1: Cho hàm số với m là tham số. Biết , tìm giá trị của m.
Ta có
Do đó, .
Mà nên 1 – 2m = 0, suy ra .
Bài 5.18 trang 83 SBT Toán 11 Tập 1: Cho m là một số thực. Biết . Xác định dấu của m.
Ta có .
Vì nên để thì – m < 0, có nghĩa là m > 0.
Vậy m > 0.
Bài 5.19 trang 83 SBT Toán 11 Tập 1: Cho hàm số . Chứng minh rằng .
Lấy dãy số (xn) bất kì sao cho xn → +∞. Khi đó
khi n → +∞.
Vậy . Từ đó suy ra .
a) Tìm hàm số f(x) biểu thị chi phí trung bình để sản xuất mỗi đơn vị sản phẩm.
b) Tính . Giới hạn này có ý nghĩa gì?
Lời giải:
a) Chi phí trung bình để sản xuất mỗi đơn vị sản phẩm là
(triệu đồng).
b) Ta có .
Ý nghĩa của giới hạn trên: Khi số lượng sản phẩm sản xuất được càng lớn thì chi phí trung bình để sản xuất một đơn vị sản phẩm càng gần với 2 (triệu đồng).
Lý thuyết Giới hạn của hàm số
1. Giới hạn hữu hạn của hàm số tại một điểm
Giả sử (a;b) là một khoảng chứa điểm và hàm số xác định trên khoảng (a;b), có thể trừ điểm . Ta nói hàm số có giới hạn là số L khi dần tới nếu với dãy số bất kì, , và , ta có, kí hiệu hay , khi .
*Quy tắc tính giới hạn của hàm số tại một điểm
a, Nếu và thì
b, Nếu với mọi và thì và .
2. Giới hạn một bên
Cho hàm số xác định trên khoảng . Ta nói số L là giới hạn bên phải của khi nếu với dãy số bất kì thỏa mãn và ta có , kí hiệu .
Cho hàm số xác định trên khoảng . Ta nói số L là giới hạn bên trái của khi nếu với dãy số bất kì thỏa mãn và ta có , kí hiệu .
3. Giới hạn hữu hạn của hàm số tại vô cực
Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn là số L khi nếu với dãy số bất kì và ta có , kí hiệu hay khi .
Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn là số L khi nếu với dãy số bất kì và ta có , kí hiệu hay khi .
* Nhận xét:
Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.
Với c là hằng số, , .
Với k là một số nguyên dương, ta có: .
4. Giới hạn vô cực của hàm số tại một điểm
a, Giới hạn vô cực
- Giả sử (a;b) là một khoảng chứa và hàm số xác định trên khoảng . Ta nói hàm số có giới hạn là khi dần tới nếu với dãy số bất kì, và , ta có, kí hiệu
Ta nói hàm số có giới hạn khi , kí hiệu , nếu .
- Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn khi về bên phải nếu với dãy số bất kì thỏa mãn và ta có , kí hiệu .
Cho hàm số xác định trên khoảng . Ta nói hàm số có giới hạn khi về bên trái nếu với dãy số bất kì thỏa mãn và ta có , kí hiệu .
Các giới hạn một bên, được định nghĩa tương tự.
b, Một số quy tắc tính giới hạn vô cực
*Giới hạn của tích
*Giới hạn của thương
Xem thêm lời giải SBT Toán lớp 11 bộ sách Kết nối tri thức hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Kết nối tri thức - hay nhất
- Văn mẫu lớp 11 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 11 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn 11 - Kết nối tri thức
- Giải SBT Ngữ văn 11 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn 11 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 11 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Kết nối tri thức
- Soạn văn 11 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 11 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 11 – Global success
- Giải sbt Tiếng Anh 11 - Global Success
- Trọn bộ Từ vựng Tiếng Anh 11 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 11 Global success
- Giải sgk Vật lí 11 – Kết nối tri thức
- Lý thuyết Vật lí 11 – Kết nối tri thức
- Giải sbt Vật lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Vật lí 11 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 11 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Hóa học 11 – Kết nối tri thức
- Lý thuyết Hóa 11 - Kết nối tri thức
- Giải sbt Hóa học 11 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 11 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 11 – Kết nối tri thức
- Lý thuyết Sinh học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Sinh học 11 – Kết nối tri thức
- Giải sbt Sinh học 11 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Kết nối tri thức
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Kết nối tri thức
- Lý thuyết Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sbt Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sgk Lịch sử 11 – Kết nối tri thức
- Giải Chuyên đề học tập Lịch sử 11 – Kết nối tri thức
- Lý thuyết Lịch sử 11 - Kết nối tri thức
- Giải sbt Lịch sử 11 – Kết nối tri thức
- Giải sgk Địa lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Địa lí 11 – Kết nối tri thức
- Lý thuyết Địa lí 11 - Kết nối tri thức
- Giải sbt Địa lí 11 – Kết nối tri thức
- Giải sgk Công nghệ 11 – Kết nối tri thức
- Lý thuyết Công nghệ 11 - Kết nối tri thức
- Giải sbt Công nghệ 11 – Kết nối tri thức
- Giải sgk Tin học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Tin học 11 – Kết nối tri thức
- Lý thuyết Tin học 11 - Kết nối tri thức
- Giải sbt Tin học 11 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng an ninh 11 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 11 – Kết nối tri thức