Sách bài tập Toán 11 Bài 19 (Kết nối tri thức): Lôgarit
Với giải sách bài tập Toán 11 Bài 19: Lôgarit sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 19.
Giải SBT Toán 11 Bài 19: Lôgarit
Bài 6.11 trang 10 SBT Toán 11 Tập 2: Tính:
Lời giải:
a) .
b) log 1 000 = log 103 = 3.
c) .
d) .
Bài 6.12 trang 10 SBT Toán 11 Tập 2: Chứng minh rằng:
b) ln (1 + e2x) = 2x + ln (1 + e−2x).
Lời giải:
a) Ta có
Vậy .
b) Ta có ln (1 + e2x) = ln [e2x(1 + e−2x)] = ln e2x + ln (1 + e−2x) = 2x + ln (1 + e−2x).
Vậy ln (1 + e2x) = 2x + ln (1 + e−2x).
Bài 6.13 trang 10 SBT Toán 11 Tập 2: Biết log23 1,585. Hãy tính:
a) log2 48 = log2 (24×3) = log2 24 + log2 3
= 4 + log2 3 4 + 1,585 = 5,585.
b)
Bài 6.14 trang 10 SBT Toán 11 Tập 2: Đặt a = log3 5, b = log4 5. Hãy biểu diễn log15 10 theo a và b.
Lời giải:
Ta có
Vì a = log3 5 nên và b = log4 5 nên hay
Do đó .
Bài 6.15 trang 10 SBT Toán 11 Tập 2: Tìm log49 32, biết log2 14 = a.
Có
Mà log2 14 = log2 (2.7) = log2 2 + log2 7 = 1 + log2 7 = a. Do đó log2 7 = a – 1.
Vậy .
Bài 6.16 trang 10 SBT Toán 11 Tập 2: So sánh các số sau:
Lời giải:
a) Ta có log3 4 > log3 3 = 1; nên .
b) Có
(do )
Vì nên hay .
Lời giải:
Có N = 22 023
Số chữ số của N = 22 023 là: [log 22 023] + 1 = [2 023.log 2] + 1 = 609.
Vậy số các chữ số của 22 023 là 609.
Lời giải:
Để số tiền tăng gấp đôi tức là A = 2P
Thời gian gửi tiết kiệm để số tiền ban đầu tăng gấp đôi là: 2P = P(1 + r)t 2 = (1 + r)t t = log1 + r 2 (năm).
Vậy cần log1 + r 2 năm gửi tiết kiệm để số tiền ban đầu tăng gấp đôi.
Vì lãi suất 8% một năm nên lãi suất kì hạn 6 tháng sẽ là r = 4% = 0,04.
Thay P = 100; r = 0,04 và A = 120 vào công thức A = P(1 + r)t , ta được:
120 = 100(1 + 0,04)t 1,2 = 1,04t t = log1,04 1,2 4,65.
Vậy sau 5 kì gửi tiết kiệm kì hạn 6 tháng, tức là sau 30 tháng, người đó sẽ nhận được ít nhất 120 triệu đồng.
R = ekx,
trong đó x (%) là nồng độ cồn trong máu và k là một hằng số.
a) Nghiên cứu chỉ ra rằng nguy cơ tương đối của một người bị tai nạn với BAC bằng 0,02% là 1,4. Tìm hằng số k trong phương trình.
b) Nguy cơ tương đối là bao nhiêu nếu nồng độ cồn trong máu là 0,17%?
c) Tìm BAC tương ứng với nguy cơ tương đối là 100.
d) Giả sử nếu một người có nguy cơ tương đối từ 5 trở lên sẽ không được phép lái xe, thì một người có nồng độ cồn trong máu từ bao nhiêu trở lên sẽ không được phép lái xe?
Lời giải:
a) Theo đề có nguy cơ tương đối của một người bị tai nạn với BAC bằng 0,02% là 1,4 nên x = 0,02% và R = 1,4.
Thay x = 0,02% và R = 1,4 vào phương trình R = ekx ta được .
Vậy hệ số k trong phương trình khoảng 1 682, 36.
b) Với x = 0,17% và k =1 682, 36 thì nguy cơ tương đối là: .
Vậy nếu nồng độ cồn trong máu là 0,17% thì nguy cơ tương đối khoảng 17,46.
c) Có nguy cơ tương đối là 100 tức R = 100.
Ta có 100 = e1 682,36x 1 682,36x = ln 100 x 0,27%.
Vậy BAC khoảng 0,27%.
d) Nếu một người có nguy cơ tương đối từ 5 trở lên sẽ không được phép lái xe tức là R ≥ 5. Khi đó, ta có e1 682,36x ≥ 5 hay x ≥ 0,096%.
Vậy một người có nồng độ cồn trong máu khoảng 0,096% trở lên sẽ không được phép lái xe.
Lý thuyết Lôgarit
1. Khái niệm Lôgarit
Cho a là một số thực dương khác 1 và M là một số thực dương. Số thực để được gọi là lôgarit cơ số a của M và kí hiệu là .
.
Chú ý: Không có lôgarit của số âm và số 0. Cơ số của lôgarit phải dương và khác 1. Từ định nghĩa lôgarit, ta có các tính chất sau:
Với và là số thực tùy ý, ta có:
2. Tính chất của lôgarit
a) Quy tắc tính lôgarit
Giả sử a là số thực dương khác 1, M và N là các số thực dương, là số thực tùy ý. Khi đó:
b) Đổi cơ số của lôgarit
Với các cơ số lôgarit a và b bất kì () và M là số thực dương tùy ý, ta luôn có:
.
3. Lôgarit thập phân và lôgarit tự nhiên
a) Lôgarit thập phân
Lôgarit cơ số 10 của một số dương M gọi là lôgatit thập phân của M, kí hiệu là hoặc (đọc là lốc của M).
b) Số e và lôgarit tự nhiên
Lôgarit cơ số e của một số dương M gọi là lôgarit tự nhiên của M, kí hiệu là (đọc là lôgarit Nêpe của M).
Sơ đồ tư duy Lôgarit
Xem thêm lời giải SBT Toán 11 sách Kết nối tri thức hay, chi tiết khác:
Bài tập cuối chương 5 trang 87
Bài 18: Lũy thừa với số mũ thực
Bài 20: Hàm số mũ và hàm số lôgarit
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Kết nối tri thức - hay nhất
- Văn mẫu lớp 11 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 11 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn 11 - Kết nối tri thức
- Giải SBT Ngữ văn 11 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn 11 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 11 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Kết nối tri thức
- Soạn văn 11 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 11 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 11 – Global success
- Giải sbt Tiếng Anh 11 - Global Success
- Trọn bộ Từ vựng Tiếng Anh 11 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 11 Global success
- Giải sgk Vật lí 11 – Kết nối tri thức
- Lý thuyết Vật lí 11 – Kết nối tri thức
- Giải sbt Vật lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Vật lí 11 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 11 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Hóa học 11 – Kết nối tri thức
- Lý thuyết Hóa 11 - Kết nối tri thức
- Giải sbt Hóa học 11 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 11 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 11 – Kết nối tri thức
- Lý thuyết Sinh học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Sinh học 11 – Kết nối tri thức
- Giải sbt Sinh học 11 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Kết nối tri thức
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Kết nối tri thức
- Lý thuyết Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sbt Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sgk Lịch sử 11 – Kết nối tri thức
- Giải Chuyên đề học tập Lịch sử 11 – Kết nối tri thức
- Lý thuyết Lịch sử 11 - Kết nối tri thức
- Giải sbt Lịch sử 11 – Kết nối tri thức
- Giải sgk Địa lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Địa lí 11 – Kết nối tri thức
- Lý thuyết Địa lí 11 - Kết nối tri thức
- Giải sbt Địa lí 11 – Kết nối tri thức
- Giải sgk Công nghệ 11 – Kết nối tri thức
- Lý thuyết Công nghệ 11 - Kết nối tri thức
- Giải sbt Công nghệ 11 – Kết nối tri thức
- Giải sgk Tin học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Tin học 11 – Kết nối tri thức
- Lý thuyết Tin học 11 - Kết nối tri thức
- Giải sbt Tin học 11 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng an ninh 11 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 11 – Kết nối tri thức