Sách bài tập Toán 11 Bài 22 (Kết nối tri thức): Hai đường thẳng vuông góc
Với giải sách bài tập Toán 11 Bài 22: Hai đường thẳng vuông góc sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 11 Bài 22.
Giải SBT Toán 11 Bài 22: Hai đường thẳng vuông góc
Vì ABCD là hình bình hành nên BC // AD. Do đó (BC, SA) = (AD, SA) = .
Do tam giác SAD đều nên = 60o .
Vậy góc giữa hai đường thẳng BC và SA bằng 60°.
Vì ABCD là hình bình hành nên BC // AD. Do đó (BC, SM) = (AD, SM).
Vì M là trung điểm của AD nên SM là đường trung tuyến.
Xét tam giác đều SAD có SM là đường trung tuyến nên SM là đường cao.
Do đó SM AD hay (AD, SM) = 90°.
Vậy góc giữa hai đường thẳng BC và SM bằng 90°.
Lời giải:
Vì hình hộp ABCD.A'B'C'D' có tất cả các cạnh bằng nhau nên ABCD là hình thoi, suy ra AC BD.
Mà A'C' // AC nên (A'C', BD) = (AC, BD) = 90°.
Vậy góc giữa hai đường thẳng A'C' và BD bằng 90°.
Vì BB' // AA' nên (AD, BB') = (AD, AA') = 180o - = 180o - 120o = 60o.
Vậy góc giữa hai đường thẳng AD và BB' bằng 60°.
Vì BB' // AA' nên (A'D, BB') = (A'D, AA') = .
Vì hình hộp ABCD.A'B'C'D' có tất cả các cạnh bằng nhau nên ADD'A' là hình thoi, suy ra A'D là đường phân giác của góc AA'D'.
Xét hình thoi ADD'A' có = 120o nên = 180o - 120o = 60o.
Mà A'D là đường phân giác của góc AA'D' nên = = 30o.
Vậy góc giữa hai đường thẳng A'D và BB' bằng 30°.
Lấy K là trung điểm của BC.
Xét tam giác BCD có N là trung điểm BD, K là trung điểm BC nên NK là đường trung bình. Do đó NK // CD và NK = = a.
Xét tam giác ABC có M là trung điểm AC, K là trung điểm BC nên MK là đường trung bình. Do đó MK // AB và MK = = a.
Có MN2 = 3a2 ; NK2 + MK2 = a2 + = 3a2.
Do đó MN2 = NK2 + MK2 nên tam giác MNK là tam giác vuông tại K hay NK MK.
Lại có MK // AB, NK // CD nên (AB, CD) = (MK, NK) = 90° hay AB CD.
a) Tính góc giữa các cặp đường thẳng sau: MN và SD; MO và SB.
b) Tính tang của góc giữa hai đường thẳng SN và BC.
Lời giải:
a) Hình chóp S.ABCD có tất cả các cạnh bằng a và đáy ABCD là hình vuông nên
SA = SB = SC = SD = AB = BC = CD = DA = a.
Xét tam giác ADB vuông tại A, có BD2 = AD2 + AB2 = a2 + a2 = 2a2.
Mà SB2 + SD2 = a2 + a2 = 2a2. Do đó SB2 + SD2 = BD2 nên tam giác SBD vuông tại S.
Vì M, N lần lượt là trung điểm của cạnh SA, AB nên MN là đường trung bình của tam giác SAB, do đó MN // SB.
Khi đó (MN, SD) = (SB, SD) = 90°.
Vì O là giao điểm của AC và BD, ABCD là hình vuông nên O là trung điểm AC, BD.
Xét tam giác SAC có M là trung điểm SA, O là trung điểm AC nên MO là đường trung bình, suy ra MO // SC.
Khi đó (MO, SB) = (SC, SB) = = 60o (do tam giác SBC là tam giác đều).
b) Xét tam giác ABC có O là trung điểm AC, N là trung điểm AB nên ON là đường trung bình, suy ra ON // BC.
Vì ON // BC nên (SN, BC) = (SN, ON) = .
Vì tam giác SAC có SA = SC = a nên tam giác SAC cân tại S mà SO là trung tuyến nên SO là đường cao.
Vì BD2 = 2a2 và ABCD là hình vuông nên AC = BD = a AO = OC = .
Xét tam giác SOC vuông tại O, có:
SC2 = SO2 + OC2 a2 = SO2 + SO = .
Vì ON là đường trung bình của tam giác ABC nên ON = .
Xét tam giác đều SAB có SN là trung tuyến đồng thời là đường cao hay SN AB.
Xét tam giác vuông SNB vuông tại N, ta có:
SN2 + NB2 = SB2 SN2 + = a2 SN2 =
Lại có SO2 + ON2 = + = . Do đó tam giác SON vuông tại O.
Xét tam giác vuông SON vuông tại O có tan = = .
Vậy tang của góc giữa hai đường thẳng SN và BC là .
Lời giải:
Gọi A, B là hai điểm tại hai vị trí chân thang và C, D là hai điểm tại hai vị trí ngọn thang, EF là đường chân tường.
Ta có EF // AB nên (EF, AC) = (AB, AC) = .
Kẻ CH AB tại H, DK AB tại K.
Ta có CDKH là hình chữ nhật nên CH = DK, CD = HK.
Xét CHA và DKB có
CA = DB, = 90o , CH = DK nên CHA = DKB (c – g – c).
Suy ra AH = KB.
Khi đó AH = = 10 (cm) = 0,1 (m).
Vì tam giác ACH vuông tại H nên cos 89,05o.
Do đó, 89,05o.
Vậy góc tạo giữa đường thẳng chân tường và cạnh cột thang khoảng 89,05°.
Lý thuyết Hai đường thẳng vuông góc
1. Góc giữa hai đường thẳng
Góc giữa hai đường thẳng m và n trong không gian, kí hiệu (m, n), là góc giữa hai đường thẳng a và b cùng đi qua một điểm và tương ứng song song với m và n.
Chú ý:
- Để xác định góc giữa hai đường thẳng chéo nhau a và b, ta có thể lấy một điểm O thuộc đường thẳng a và qua đó kẻ đường thẳng b’ song song với b. Khi đó .
- Với hai đường thẳng a, b bất kì: .
2. Hai đường thẳng vuông góc
Hai đường thẳng a, b được gọi là vuông góc với nhau, kí hiệu , nếu góc giữa chúng bằng .
Sơ đồ tư duy Hai đường thẳng vuông góc
Xem thêm lời giải SBT Toán 11 sách Kết nối tri thức hay, chi tiết khác:
Bài 23: Đường thẳng vuông góc với mặt phẳng
Bài 24: Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng
Xem thêm các chương trình khác:
- Soạn văn lớp 11 Kết nối tri thức - hay nhất
- Văn mẫu lớp 11 - Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn 11 – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn 11 - Kết nối tri thức
- Giải SBT Ngữ văn 11 – Kết nối tri thức
- Bố cục tác phẩm Ngữ văn 11 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 11 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 11 – Kết nối tri thức
- Soạn văn 11 Kết nối tri thức (ngắn nhất)
- Bài tập Tiếng Anh 11 Global success theo Unit có đáp án
- Giải sgk Tiếng Anh 11 – Global success
- Giải sbt Tiếng Anh 11 - Global Success
- Trọn bộ Từ vựng Tiếng Anh 11 Global success đầy đủ nhất
- Ngữ pháp Tiếng Anh 11 Global success
- Giải sgk Vật lí 11 – Kết nối tri thức
- Lý thuyết Vật lí 11 – Kết nối tri thức
- Giải sbt Vật lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Vật lí 11 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 11 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Hóa học 11 – Kết nối tri thức
- Lý thuyết Hóa 11 - Kết nối tri thức
- Giải sbt Hóa học 11 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 11 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 11 – Kết nối tri thức
- Lý thuyết Sinh học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Sinh học 11 – Kết nối tri thức
- Giải sbt Sinh học 11 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 11 – Kết nối tri thức
- Giải Chuyên đề học tập Kinh tế pháp luật 11 – Kết nối tri thức
- Lý thuyết Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sbt Kinh tế pháp luật 11 – Kết nối tri thức
- Giải sgk Lịch sử 11 – Kết nối tri thức
- Giải Chuyên đề học tập Lịch sử 11 – Kết nối tri thức
- Lý thuyết Lịch sử 11 - Kết nối tri thức
- Giải sbt Lịch sử 11 – Kết nối tri thức
- Giải sgk Địa lí 11 – Kết nối tri thức
- Giải Chuyên đề học tập Địa lí 11 – Kết nối tri thức
- Lý thuyết Địa lí 11 - Kết nối tri thức
- Giải sbt Địa lí 11 – Kết nối tri thức
- Giải sgk Công nghệ 11 – Kết nối tri thức
- Lý thuyết Công nghệ 11 - Kết nối tri thức
- Giải sbt Công nghệ 11 – Kết nối tri thức
- Giải sgk Tin học 11 – Kết nối tri thức
- Giải Chuyên đề học tập Tin học 11 – Kết nối tri thức
- Lý thuyết Tin học 11 - Kết nối tri thức
- Giải sbt Tin học 11 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng an ninh 11 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 11 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 11 – Kết nối tri thức