Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 60 độ

Lời giải Bài 7.29 trang 38 SBT Toán 11 Tập 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 2,082 08/11/2023


Giải SBT Toán 11 Bài 26: Khoảng cách

Bài 7.29 trang 38 SBT Toán 11 Tập 2: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 60°, biết tam giác SBC đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Tính theo a khoảng cách:

a) Từ điểm S đến mặt phẳng (ABC).

b) Từ điểm B đến mặt phẳng (SAC).

c) Giữa hai đường thẳng AB và SC.

Lời giải:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC bằng 60 độ

a) Kẻ SH BC tại H. Do (SBC) (ABC) và (SBC) (ABC) = BC nên SH (ABC). Suy ra d(S, (ABC)) = SH.

Vì tam giác SBC là tam giác đều cạnh a, SH là đường cao nên SH = a32.

Vậy d(S, (ABC)) = a32.

b) Do tam giác SBC đều và SH BC nên SH đồng thời là trung tuyến hay H là trung điểm của BC.

Kẻ HK CA tại K mà SH AC (do SH (ABC)). Suy ra AC (SHK).

Kẻ HQ SK tại Q mà AC HQ (do AC (SHK)). Do đó HQ (SAC).

Khi đó d(H, (SAC)) = HQ.

Xét tam giác vuông ABC vuông tại A, có AB = BC . cos 60° = a2.

Xét tam giác ABC vuông tại A, có HK // AB (vì cùng vuông góc với AC) mà H là trung điểm của BC nên K là trung điểm của AC. Do đó HK là đường trung bình của tam giác ABC. Suy ra HK = AB2=a4.

Xét tam giác SHK vuông tại H, có 1HQ2=1SH2+1HK2=43a2+16a2=523a2.

HQ=39a26.

Lại có H là trung điểm của BC nên d(B, (SAC)) = 2 . d(H, (SAC)) = 2HQ = 39a13.

c) Dựng hình bình hành ABMC mà A^=90° nên ABMC là hình chữ nhật.

Do ABMC là hình chữ nhật nên AB // MC.

Khi đó AB // (SCM) và mặt phẳng (SCM) chứa SC nên

d(AB, SC) = d(AB, (SCM)) = d(B, (SCM)) = 2d(H, (SCM)).

Kẻ HN CM tại N.

Vì SH (ABC) nên SH (ABMC), suy ra SH MC.

Vì SH MC và HN CM nên CM (SHN).

Kẻ HE SN tại E.

Vì CM (SHN) nên CM HE mà HE SN nên HE (SCM).

Suy ra d(H, (SCM)) = HE.

Xét tam giác vuông ABC vuông tại A, có AC = BC . sin 60° = a32.

Xét tam giác BCM có HN là đường trung bình nên HN = BM2=AC2=a34.

Xét tam giác SHN vuông tại H, có 1HE2=1SH2+1HN2=43a2+163a2=203a2

HE=15a10.

Vậy d(AB, SC) = 2HE =15a5.

1 2,082 08/11/2023


Xem thêm các chương trình khác: