Chuyên đề Hai mặt phẳng vuông góc (2022) - Toán 1
Với Chuyên đề Hai mặt phẳng vuông góc (2022) - Toán 11 mới nhất được biên soạn bám sát chương trình Toán 11 giúp các bạn học tốt môn Toán hơn.
Chuyên đề Hai mặt phẳng vuông góc - Toán 11
A. Lý thuyết.
I. Góc giữa hai mặt phẳng
1. Định nghĩa:
Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó.
- Nếu hai mặt phẳng song song hoặc trùng nhau thì ta nói rằng góc giữa hai mặt phẳng đó bằng 00.
2. Cách xác định góc giữa hai mặt phẳng cắt nhau.
- Giả sử 2 mặt phẳng (α) và (β) cắt nhau theo giao tuyến c. Từ một điểm I bất kì trên c ta dựng trong (α) đường thẳng a vuông góc với c và dựng trong (β) đường thẳng b vuông góc với c.
- Khi đó, góc giữa hai mặt phẳng (α) và (β) là góc giữa hai đường thẳng a và b.
Ví dụ 1. Cho hình chóp S. ABC có , gọi I là trung điểm BC. Ta xác định góc giữa hai mặt phẳng ( SBC) và ( ABC) :
Ta có:
3. Diện tích hình chiếu của một đa giác.
Cho đa giác H nằm trong mặt phẳng (α) có diện tích S và H’ là hình chiếu vuông góc của H lên mp(β).
Khi đó, diện tích S’ của H’ được tính theo công thức:
với là góc giữa (α) và (β).
II. Hai mặt phẳng vuông góc.
1. Định nghĩa.
Hai mặt phẳng gọi là vuông góc với nhau nếu góc giữa hai mặt phẳng đó là góc vuông.
Nếu hai mặt phẳng (α) và (β) vuông góc với nhau ta kí hiệu: .
2. Các định lí.
- Định lí 1.
Điều kiện cần và đủ để hai mặt phẳng vuông góc với nhau là mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.
- Hệ quả 1.
Nếu hai mặt phẳng vuông góc với nhau thì bất cứ đường thẳng nào nằm trong mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.
- Hệ quả 2.
Cho hai mặt phẳng (α) và (β) vuông góc với nhau. Nếu từ một điểm thuộc mặt phẳng (α) ta dựng một đường thẳng vuông góc với mặt phẳng (β) thì đường thẳng này nằm trong mặt phẳng (α).
Ví dụ 2. Cho tứ diện ABCD có . Trong tam giác BDC vẽ các đường cao BE và DF cắt nhau ở O. Trong( ADC) vẽ tại K. Chứng minh
a)
b)
c)
Lời giải:
a) Ta có
b) Ta có:
Mà
c) Ta có
III. Hình lăng trụ đứng, hình hộp chữ nhật, hình lập phương.
1. Định nghĩa. Hình lăng trụ đứng là hình lăng trụ có các cạnh bên vuông góc với các mặt đáy. Độ dài cạnh bên được gọi là chiều cao của hình lăng trụ đứng.
- Hình lăng trụ đứng có đáy là tam giác, tứ giác, ngũ giác… được gọi là hình lăng trụ đứng tam giác, hình lăng trụ đứng tứ giác, hình lăng trụ đứng ngũ giác…
- Hình lăng trụ đứng có đáy là một đa giác đều được gọi là hình lăng trụ đều.
Ta có các loại hình lăng trụ đều như lăng trụ tam giác đều, lăng trụ tứ giác đều..
- Hình lăng trụ đứng có đáy là hình bình hành được gọi là hình hộp đứng.
- Hình lăng trụ đứng có đáy là hình chữ nhật được gọi là hình hộp chữ nhật.
- Hình lăng trụ đứng có đáy là hình vuông và các mặt bên đều là hình vuông được gọi là hình lập phương.
2. Nhận xét
Các mặt bên của hình lăng trụ đứng luôn luôn vuông góc với mặt phẳng đáy và là những hình chữ nhật.
IV. Hình chóp đều và hình chóp cụt đều.
1. Hình chóp đều.
Cho hình chóp đỉnh S có đáy là đa giác A1A2…An và H là hình chiếu vuông góc của S trên mặt phẳng đáy (A1A2…An). Khi đó, đoạn thẳng SH gọi là đường cao của hình chóp và H là chân đường cao của hình chóp.
- Định nghĩa. Một hình chóp được gọi là hình chóp đều nếu nó có đáy là một đa giác đều và có chân đường cao trùng với tâm của đa giác đáy.
- Nhận xét:
a) Hình chóp đều có các mặt bên là những tam giác cân bằng nhau. Các mặt bên tạo với mặt đáy các góc bằng nhau.
b) Các cạnh bên của hình chóp đều tạo với mặt đáy các góc bằng nhau.
2. Hình chóp cụt đều.
- Định nghĩa: Phần của hình chóp đều nằm giữa đáy và một thiết diện song song với đáy cắt các cạnh bên của hình chóp đều được gọi là hình chóp cụt đều.
- Ví dụ 3: Hình ABCD.A’B’C’D’ ở hình dưới là một hình chóp cụt đều. Hai đáy của hình chóp cụt đều là 2 đa giác đều và đồng dạng với nhau.
- Nhận xét. Các mặt bên của hình chóp cụt đều là những hình thang cân và các cạnh bên của hình chóp cụt đều có độ dài bằng nhau.
B. Bài tập
I. Bài tập trắc nghiệm
Bài 1: Cho tứ diện ABCD có: AB = AC = AD, góc BAC bằng góc BAD bằng 600. Gọi M và N lần lượt là trung điểm của AB và CD.
a) Góc giữa hai mặt phẳng (ACD) và (BCD) là:
b) Mặt phẳng (BCD) vuông góc với mặt phẳng
A. (CDM)
B. (ACD)
C. (ABN)
D. (ABC)
c) Đường vuông góc chung của AB và CD là:
A. BN
B. AN
C. BC
D. MN
Lời giải:
Đáp án: a- B, b - C, c - D
a. Các tam giác ABC và ABD là tam giác đều ⇒ tam giác ACD cân
⇒ BN ⊥ CD và AN ⊥ CD ⇒ góc ANB là góc của hai mặt phẳng (ACD) và (BCD)
b. Ta có CD ⊥ (ABN) (do BN ⊥ CD và AN ⊥ CD) ⇒ (BCD) ⊥ (ABN)
c. CD ⊥ MN; AB ⊥ (CDM) (do AB ⊥ CM và AB ⊥ DM)
MN là đường vuông góc chung của AB và CD
Bài 2: Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc.
a) Khằng định nào sau đây đúng?
A. AB ⊥ (ACD).
B. BC ⊥ (ACD).
C. CD ⊥ (ABC).
D. AD ⊥ (BCD).
b) Điểm cách đều bốn điểm A, B, C, D là:
A. trung điểm J của AB
B. trung điểm I của BC
C. trung điểm K của AD
D. trung điểm M của CD
Lời giải:
Đáp án: a - C, b - C
a. Phương án A sai vì chỉ có AB ⊥ CD; phương án B sai vì chỉ có : BC ⊥ CD
Phương án C đúng vì
Phương án D sai vì AD không vuông góc với đường thẳng nào thuộc mặt phẳng (BCD)
b. CD ⊥ (ABC) vì CD ⊥ AB và CD ⊥ BC
AB ⊥ (BCD) vì AB ⊥ BC và AB ⊥ CD
Phương án A sai vì tam giác ABC không vuông góc tại C nên trung điểm của AB không cách đều ba điểm A, B, C
Phương án B sai vì tam giác ABC không vuông góc tại A nên trung điểm của BC không cách đều ba điểm A, B, C
Phương án C đúng vì tam giác ACD vuông góc tại C nên trung điểm K của AD cách đều ba điểm A, C, D; tam giác ABD vuông góc tại B nên trung điểm K của AD cách đều ba điểm A, B và D
Phương án D sai vì tam giác CBD không vuông góc tại B nên trung điểm của CD không cách đều ba điểm B, C, D
Bài 3: Cho chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a.
a) Đường thẳng SA vuông góc với
A. SC
B. SB
C. SD
D. CD
b) Khoảng cách từ D đến mặt phẳng (SAC) bằng:
Lời giải:
Đáp án: a - A, b - D
a. Tứ giác ABCD là hình vuông nên
Tam giác SAC có SA = a, SC = a và AC = a√2 ⇒ SAC là tam giác vuông tại S, hay SA ⊥ SC
b. Gọi O là giao của AC và BD ⇒ DO ⊥ (SAC) (do DO ⊥ AC và DO ⊥ SO)
⇒ khoảng cách từ D đến (SAC) bằng DO
Ta có:
Bài 4: Cho hình lập phương ABCD.A’B’C’D’:
a) Mặt phẳng (ACC’A’) không vuông góc với mp nào?
b) Hình chiếu vuông góc của A lên mặt phẳng (A’BD) là?
a) Ta có:
*Vì
*Vì
*Vì
Vậy mp(CDD’C’) không vuông góc với mặt phẳng (ACC’A’).
b) Ta có: BD = A’B = A’D nên tam giác A’BD là tam giác đều.
Lại có: AB = AD = AA’ nên hình chiếu vuông góc của điểm A lên mp(A’BD) là tâm của tam giác BDA’.
Bài 5: Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc.
a) Đường thẳng AB vuông góc với mp nào?
b) Mặt phẳng (ABD) vuông góc với mặt phẳng nào của tứ diện?
A. Không vuông góc với mặt nào?
B. (ACD) C. (ABC) D. (BCD)
c) Đường vuông góc chung của AB và CD là:
A. AC
B. BC
C. AD
D. BD
Lời giải:
Đáp án: a - A, b - D, c - B
a. AB ⊥ CD và AB ⊥ CD ⇒ AB ⊥ (BCD)
b. vì AB ⊥ (BCD) ⇒ (ABD) ⊥ (BCD)
c. BC ⊥ AB và BC ⊥ CD ⇒ BC là đường vuông góc chung của AB và CD
Bài 6: Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD.
a) Hai mặt phẳng (SAB) và (SBC) vuông góc vì.
A. Góc của (SAB) và (SBC) là góc ABC và bằng 900.
B. Góc của (SAB) và (SBC) là góc BAD và bằng 900.
C. AB ⊥ BC; AB ⊂ (SAB) và BC ⊂ (SBC)
D. BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA
b) Hai mặt phẳng (SAC) và (AHK) vuông góc vì:
A. AH ⊥(SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK⊥SD và AK⊥CD)
B. AH ⊥(SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK⊥SD và AK⊥CD) nên SC⊥(AHK)
C. AH ⊥(SBC) (do AH ⊥ SB và AH ⊥ BC) nên SC⊥(AHK)
D. AK ⊥(SBC) (do AK ⊥ SD và AK ⊥ CD) nên SC ⊥ (AHK)
Lời giải:
Đáp án: a - D, b - B
a) Phương án A sai vì AB và CB không vuông góc với giao tuyến SB của (SAB) và (SBC), nên góc ABC không phải là góc của hai mặt phẳng này;
Phương án B sai vì góc BAD không phải là góc của hai mặt phẳng (SAB) với mặt phẳng (SBC);
Phương án C sai vì AB ⊥ BC thì chưa đủ để kết luận AB vuông góc với mặt phẳng (SBC);
Phương án D đúng vì : BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA ⇒ (SBC) ⊥ (SAB)
b) Phương án A sai vì hai điều kiện AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC) và AK ⊥ (SCD) (do AK vuông góc với SD và AK ⊥ CD) chưa liên quan đến (SAC); phương án B đúng vì AH ⊥(SBC) và AK ⊥ (SCD) nên SC ⊥ (AHK), từ đó suy ra hai mặt phẳng (AHK) và (SAC) vuông góc; phương án C và D đều sai vì chưa đủ điều kiện kết luận SC ⊥ (AHK)
Bài 7: Cho hai hình vuông ABCD và ABEF cạnh a nằm trên hai mặt phẳng vuông góc.
a) DE bằng:
A. a√3
B. a√2
C. 3a2
D. a(1 + √3)
b) Đường thẳng DE vuông góc
A. Chỉ với AC
B. Chỉ với BF
C. Chỉ với AC và BF
D. Hoặc với AC hoặc với BF
Lời giải:
Đáp án: a - A, b - C
EB ⊥(ABCD) vì nó vuông góc với giao tuyến AB của hai mặt phẳng vuông góc đã cho ⇒ CD ⊥ (EBC) ⇒ tam giác ECD vuông tại C.
⇒ DE = a√3. Vậy phương án A đúng
Phương án C đúng vì : hình chiếu của DE lên (ABEF) là AE, mà AE ⊥ BF, suy ra DE ⊥ BF; hình chiếu của DE lên (ABCD) là BD, mà AC ⊥ BD, nên suy ra AC ⊥ DE.
Bài 8: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc giữa cạnh bên với mặt phẳng đáy bằng ∝
Tang của góc giữa mặt bên và mặt đáy bằng:
Lời giải:
Đáp án: C
Chân đường cao hình chóp đều S.ABCD trùng với tâm O của đáy ABCD. AO là hình chiếu của SA lên (ABCD)
Gọi M là trung điểm của BC ⇒ OM là hình chiếu của SM lên (ABCD) và MO ⊥ BC.
Bài 9: Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a.
a) Mặt phẳng (ABCD) vuông góc với mặt phẳng:
A. (SAD)
B. (SBD)
C. (SDC)
D. (SBC)
b) Giả sử góc BAD bằng 600. Khoảng cách từ điểm S đến mặt phẳng (ABCD) bằng:
c) Góc giữa mặt bên hình chóp S.ABCD và mặt phẳng đáy có tang bằng:
Lời giải:
Đáp án: a - B, b - A, c - D
a. Gọi I là giao điểm của AC và BD.
Từ S vẽ SO ⊥ (ABCD)
⇒ OA = OB = OC (là hình chiếu của các đường xiên bằng nhau)
⇒ O là tâm đường tròn ngoại tiếp tiếp tam giác ABC
Ta có: BI là đường trung tuyến của tam giác ABC nên O nằm trên đường thẳng BI hay 0 ∈ BD
Vậy SO ⊂ (SBD) và SO ⊥(ABCD) ⇒ (SBD) ⊥(ABCD)
b) Tam giác ABD có AB = AD và góc BAD = 600 nên tam giác ABD đều suy ra: BD = a
Ta có;
Tam giác SOB vuông tại O nên
c. Từ O vẽ OM ⊥ BC ⇒ góc OMS là góc của mặt bên và mặt phẳng đáy
Ta có: ABCD là hình thoi nên
Bài 1 Trong các mệnh đề sau đây, mệnh đề nào là đúng ?
a) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song ;
b) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song ;
c) Mặt phẳng (α) vuông góc với đường thẳng b và b vuông góc với thẳng a, thì a song song với (α).
d) Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song.
e) Hai đường thẳng cùng vuông góc với một đường thẳng thì chúng song song.
Lời giải:
a) Đúng
b) Đúng
c) Sai (vì a có thể nằm trong mp(α), xem hình vẽ)
d) Sai, chẳng hạn hai mặt phẳng (α) và (β) cùng đi qua đường thẳng a và a ⊥ mp(P) nên (α) và (β) cùng vuông góc với mp(P) nhưng (α) và (β) cắt nhau.
e) Sai, chẳng hạn a và b cùng ở trong mp(P) và mp(P) ⊥ d. Lúc đó a và b cùng vuông góc với d nhưng a và b có thể không song song nhau.
Bài 2 Trong các điều khẳng định sau đây, điều nào đúng?
a) Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại.
b) Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.
c) Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một mặt phẳng khác cho trước.
d) Đường thẳng nào vuông góc với cả hai đường thẳng chéo nhau cho trước là đường vuông góc chung của hai đường thẳng đó.
Lời giải:
Câu a) đúng. Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại (xem mục c). Tính chất của khoảng cách giữa hai đường thẳng chéo nhau (Bài 5 – chương III).
Câu b) sai. Qua một điểm có vô số mặt phẳng vuông góc với một mặt phẳng cho trước.
Câu c) sai. Vì trong trường hợp đường thẳng vuông góc với mặt phẳng thì ta có vô số mặt phẳng vuông góc với mặt phẳng cho trước vì bất kì mặt phẳng nào chứa đường thẳng cũng đều vuông góc với mặt phẳng cho trước. Để có khẳng định đúng ta phải nói: Qua một đường thẳng không vuông góc với một mặt phẳng có duy nhất một mặt phẳng vuông góc với mặt phẳng đã cho.
Câu d) sai. Vì đường vuông góc chung của hai đường thẳng phải cắt cả hai đường ấy.
Bài 3 Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD).
a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông.
b) Mặt phẳng (α) đi qua A và vuông góc với cạnh SC lần lượt cắt SB, AC, SD tại B', C', D'. Chứng minh B'D' song song với BD và AB' vuông góc với SB.
Lời giải:
Bài 4 Hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và có góc BAD = 60o. Gọi O là giao điểm của AC và BD. Đường thẳng SO vuông góc với mặt phẳng (ABCD) và SO = 3a/4 . Gọi E là trung điểm của đoạn BC và F là trung điểm của đoạn BE.
a) Chứng minh mặt phẳng (SOF) vuông góc với mặt phẳng (SBC).
b) Tính các khoảng cách từ O và A đến mặt phẳng (SBC).
Lời giải:
Bài 5 Cho tứ diện ABCD có hai mặt ABC và ADC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác ABC vuông tại A có AB =a, AC =b. Tam giác ACD vuông tại D có CD = a.
a) Chứng minh các tam giác BAD và BDC là các tam giác vuông.
b) Gọi I và K lần lượt là trung điểm của AD và BC. Chứng minh IK là đường vuông góc chung của hai đường thẳng AD và BC.
Lời giải:
Chứng minh tương tự, ta có tam giác AKD là tam giác cân tại K có KI là đường trung tuyến nên đồng thời là đường cao.
⇒ IK ⊥ AD (2)
Từ (1) và (2) suy ra; IK là đường vuông góc chung của hai đường thẳng AD và BC.
Bài 6 Cho khối lập phương ABCD.A'B'C'D' cạnh a.
a) Chứng minh BC' vuông góc với mặt phẳng (A'B'CD)
b) Xác định và tính độ dài đoạn vuông góc chung của AB' và BC'.
Lời giải:
b) Do AD’ // BC’ nên mp(AB’D’) là mặt phẳng chứa AB’ và song song với BC’.
Ta tìm hình chiếu của BC’ trên mp ( AB’D’).
Gọi E và F lần lượt là tâm của các mặt bên ADD’A’ và BCB’C’.
Vậy H là hình chiếu F trên mp (AB’D’). Qua H ta dựng đường thẳng song song với BC’ thì đường thẳng này chính là hình chiếu của BC’ trên mp(AB’D’).
Đường thẳng qua H song song với BC’ cắt AB’ tại K. Qua K kẻ đường thẳng song song với HF, đường này cắt BC’ tại I. Khi đó, KI chính là đường vuông góc chung của AB’ và BC’.
Bài 7 Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a, có góc BAD = 60o và
a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.
b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).
c) Chứng minh SB vuông góc với BC.
d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tanφ.
Lời giải:
a) Tam giác ABD có AB = AD ( do ABCD là hình thoi)
=> Tam giác ABD cân tại A. Lại có góc A= 60o
=> Tam giác ABD đều.
Lại có; SA = SB = SD nên hình chóp S.ABD là hình chóp đều.
* Gọi H là tâm của tam giác ABD
=>SH ⊥ (ABD)
*Gọi O là giao điểm của AC và BD.
Ngoài ra các em học sinh và thầy cô có thể tham khảo thêm nhiều tài liệu hữu ích môn toán khác được cập nhật liên tục tại chuyên trang của chúng tôi.
Nhắc lại định nghĩa vectơ không gian.
Bài 7 Cho hình lăng trụ tam giác ABC.A'B'C'. Hãy kể tên những vectơ bằng vectơ có điểm đầu và điểm cuối là đỉnh của hình lăng trụ.
Lời giải:
Vectơ trong không gian là một đoạn thẳng có định hướng, tức là một đoạn thẳng đã được chỉ rõ điểm đầu và điểm cuối.
Bài 8 Trong không gian cho ba vectơ a , b và c đều khác vectơ 0 . Khi nào ba véc tơ đó đồng phẳng?
Lời giải:
Ba vectơ a→ ; b→ và c→ đồng phẳng nếu thỏa mãn một trong hai điều kiện sau:
- Giá của 3 vector đều cùng song song với mặt phẳng (P).
- 1 trong 3 vec tơ biểu diễn được qua hai vec tơ còn lại,
tức là tồn tại cặp số (m; n) duy nhất thỏa mãn
Bài 9 Trong không gian hai đường thẳng không cắt nhau có thể vuông góc với nhau không? Giả sử hai đường thẳng a và b lần lượt có vectơ chỉ phương là vector u→ và vector v→ . Khi nào ta có kết luận a và b vuông góc với nhau?
Lời giải:
+ Trong không gian, hai đường thẳng chéo nhau vẫn có thể vuông góc với nhau.
Đường thẳng a có vectơ chỉ phương u→
Đường thẳng b có vectơ chỉ phương v→
Bài 10 Muốn chứng minh đường thẳng a vuông góc với mặt phẳng (α) có cần chứng minh a vuông góc với mọi đường thẳng của (α) hay không?
Lời giải:
Không cần chứng minh a vuông góc với mọi đường thẳng của mặt phẳng.
Ta có thể chọn một trong số những cách sau để chứng minh đường thẳng vuông góc với mặt phẳng
- Cách 1 : Chứng minh đường thẳng d vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng
- Cách 2 : Sử dụng định lí : "Nếu hai mặt phẳng vuông góc với nhau thì bất kì đường thẳng nào nằm trong mặt phẳng này và vuông góc với giao tuyến thì cũng vuông góc với mặt phẳng kia".
- Cách 3 : Sử dụng định lí : " Nếu hai mặt phẳng phân biệt cùng vuông góc với mặt phẳng thứ 3 thì giao tuyến của chúng cũng sẽ vuông góc với mặt phẳng đó"
III. Bài tập vận dụng
Bài 1 Cho ba mặt phẳng những mệnh đề nào sau đây đúng?
a) Nếu (α) ⊥ (β) và (α) // () thì (β) ⊥
b) Nếu (α) ⊥ (β) và (α) ⊥ thì (β) //
Bài 2 Cho hai mặt phẳng và vuông góc với nhau. Người ta lấy trên giao tuyến của hai mặt phẳng đó hai điểm và sao cho . Gọi là một điểm trên và là một điểm trên sao cho và cùng vuông góc với giao tuyến và , . Tính độ dài đoạn .
Bài 3 Trong mặt phẳng cho tam giác vuông ở . Một đoạn thẳng vuông góc với tại . Chứng minh rằng:
a) là góc giữa hai mặt phẳng và ;
b) Mặt phẳng vuông góc với mặt phẳng ;
c) với và lần lượt là giao điểm của và với mặt phẳng đi qua và vuông góc với .
Bài 4 Cho hai mặt phẳng , cắt nhau và một điểm không thuộc và không thuộc . Chứng minh rằng qua điểm có một và chỉ một mặt phẳng vuông góc với và . Nếu song song với thì kết quả trên sẽ thay đổi như thế nào?
Bài 5 Cho hình lập phương . Chứng minh rằng:
a) Mặt phẳng vuông góc với mặt phẳng ;
b) Đường thẳng vuông góc với mặt phẳng .
Bài 6 Cho hình chóp có đáy là một hình thoi cạnh và có . Chứng minh rằng:
a) Mặt phẳng vuông góc với mặt phẳng ;
b) Tam giác là tam giác vuông.
Bài 7 Cho hình hộp chữ nhật có .
a) Chứng minh rằng mặt phẳng vuông góc với mặt phẳng .
b) Tính độ dài đường chéo theo .
Bài 8 Tính độ dài đường chéo của một hình lập phương cạnh alpha.
Bài 9 Nhắc lại nội dung định lí ba đường thẳng vuông góc
Bài 10 Nhắc lại định nghĩa:
a) Góc giữa đường thẳng và mặt phẳng.
b) Góc giữa hai mặt phẳng.
Bài 11 Muốn chứng minh mặt phẳng (α) vuông góc với mặt phẳng (β) ta có thể ?
Xem thêm các bài Chuyên đề Toán lớp 11 hay, chi tiết khác:
Chuyên đề Vectơ trong không gian
Chuyên đề Hai đường thẳng vuông góc
Xem thêm các chương trình khác:
- Giải sgk Hóa học 11 | Giải bài tập Hóa học 11 Học kì 1, Học kì 2 (Sách mới)
- Lý thuyết Hóa học 11(sách mới) | Kiến thức trọng tâm Hóa 11
- Giải sbt Hóa học 11 (sách mới) | Sách bài tập Hóa học 11
- Các dạng bài tập Hóa học lớp 11
- Giáo án Hóa học lớp 11 mới nhất
- Tóm tắt tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 11 (hay nhất) | Để học tốt Ngữ Văn 11 (sách mới)
- Soạn văn 11 (ngắn nhất) | Để học tốt Ngữ văn 11 (sách mới)
- Tác giả tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Văn mẫu 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 11 (thí điểm)
- Giải sgk Tiếng Anh 11 | Giải bài tập Tiếng anh 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Tiếng Anh 11 (sách mới) | Sách bài tập Tiếng Anh 11
- Giải sbt Tiếng Anh 11 (thí điểm)
- Giải sgk Lịch sử 11 | Giải bài tập Lịch sử 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Lịch Sử 11(sách mới) | Kiến thức trọng tâm Lịch Sử 11
- Giải Tập bản đồ Lịch sử 11
- Giải sgk Vật Lí 11 | Giải bài tập Vật lí 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Vật Lí 11 (sách mới) | Sách bài tập Vật Lí 11
- Lý thuyết Vật Lí 11 (sách mới) | Kiến thức trọng tâm Vật Lí 11
- Các dạng bài tập Vật Lí lớp 11
- Giáo án Vật lí lớp 11 mới nhất
- Giải sgk Sinh học 11 | Giải bài tập Sinh học 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Sinh học 11 (sách mới) | Kiến thức trọng tâm Sinh 11
- Giải sgk Giáo dục công dân 11
- Lý thuyết Giáo dục công dân 11
- Lý thuyết Địa Lí 11 (sách mới) | Kiến thức trọng tâm Địa lí 11
- Giải Tập bản đồ Địa Lí 11
- Giải sgk Giáo dục quốc phòng - an ninh 11