Chuyên đề Nhị thức Niu-tơn (2022) - Toán 11

Với Chuyên đề Nhị thức Niu-tơn (2022) - Toán 11 mới nhất được biên soạn bám sát chương trình Toán 11 giúp các bạn học tốt môn Toán hơn.

1 985 18/08/2022
Tải về


Chuyên đề Nhị thức Niu-tơn - Toán 11

A. Lý thuyết.

I. Công thức nhị thức Niu- tơn

Ta có:

Lý thuyết Nhị thức Niu-tơn chi tiết – Toán lớp 11 (ảnh 1)

- Công thức nhị thức Niu – tơn.

(a​  +  b)n  =  Cn0an  +​  Cn1.an1b+​ ...+​  Cnk.ankbk ​+....+Cnn1abn1+​  Cnnbn

- Hệ quả:

Với a = b = 1 ta có: 2n  =Cn0+​ Cn1+...+​ Cnn

Với a = 1; b = – 1 ta có: 0  =Cn0​ Cn1+...+(1)k.Cnk+...+(1)n​ Cnn

- Chú ý:

Trong biểu thức ở vế phải của công thức (1):

a) Số các hạng tử là n + 1.

b) Các hạng tử có số mũ của a giảm dần từ n đến 0; số mũ của b tăng dần từ 0 đến n, nhưng tổng các số mũ của a và b trong mỗi hạng tử luôn bằng n (quy ước a0=b0=1).

c) Các hệ số của mỗi cặp hạng tử cách đều hai hạng tử đầu và cuối thì bằng nhau.

- Ví dụ 1. Khai triển biểu thức: (a – b)5.

Lời giải:

Áp dụng công thức nhị thức Niu – tơn ta có:

Lý thuyết Nhị thức Niu-tơn chi tiết – Toán lớp 11 (ảnh 1)

- Ví dụ 2. Khai triển biểu thức: (3x – 2)4.

Lý thuyết Nhị thức Niu-tơn chi tiết – Toán lớp 11 (ảnh 1)

II. Tam giác Pa- xcan

Trong công thức nhị thức Niu – tơn ở mục I, cho n = 0; 1; … và xếp các hệ số thành dòng, ta nhận được tam giác sau đây, gọi là tam giác Pa- xcan.

Lý thuyết Nhị thức Niu-tơn chi tiết – Toán lớp 11 (ảnh 1)

- Nhận xét:

Từ công thức Cnk=  Cn1k1  +  Cn1k suy ra cách tính các số ở mỗi dòng dựa vào các số ở dòng trước nó.

Ví dụ 3. C62=C51+C52=5+10=15.

B. Bài tập

I. Bài tập trắc nghiệm

Bài 1: Tìm số hạng đứng giữa trong khai triển (x3 + xy)21

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Lời giải:

Theo khai triển nhị thức Niu-tơn, ta có

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Suy ra khai triển (x3 + xy)21 có 22 số hạng nên có hai số hạng đứng giữa là số hạng thứ 11 (ứng với k = 10) và số hạng thứ 12 (ứng với k = 11). Vậy hai số hạng đứng giữa cần tìm là

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án D

Bài 2: Tìm hệ số của x5 trong khai triển P(x) = x(1 - 2x)5 + x2(1 + 3x)10

A. 80

B. 3240

C. 3320

D. 259200

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án C

Bài 3: Tìm hệ số của x5 trong khai triển : P(x) = (1 + x) + 2(1 + x)2 + ... + 8(1 + x)8.

A. 630

B. 635

C. 636

D.637

Lời giải:

Các biểu thức (1 + x), (1 + x)2, ⋯, (1 + x)4 không chứa số hạng chứa x5.

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án C

Bài 4: Tìm số nguyên dương n thỏa mãn Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11.

A.n = 8

B.n = 9

C.n = 10

D. n = 11

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án C

Bài 5: Tìm số nguyên dương n thỏa mãn Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11.

A.n = 5

B.n = 9

C.n = 10

D.n = 4

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án A

Bài 6: Tìm số nguyên dương n sao cho: Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

A. 5

B. 11

C. 12

D. 4

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án A

Bài 7: Tính Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án D

Bài 8: Khai triển biểu thức (x-m2)4 thành tổng các đơn thức:

A. x4 –x3m+x2m2 + m4

B. x4 –x3m2+x2m4 –xm6+ m8

C. x4 –4x3m+6x2m2 -4xm+ m4

D. x4 –4x3m2+6x2m4 – 4xm6+ m8

Lời giải:

Sử dụng nhị thức Niuton với a = x, b = - m2

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án D

Bài 9: Tìm số hạng không chứa x trong khai triển

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

A. 2268      

B. -2268

C. 84      

D. -27

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án là B

Bài 10: Xác định hệ số của số hạng chứa x3 trong khai triển (x2-2/x)n nếu biết tổng các hệ số của ba số hạng đầu trong khai triển đó bằng 49.

A. 160      

B. -160

C. 160x3      

D. -160x3

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án là B

II. Bài tập tự luận có lời giải

Bài 1: Tính tổng S = 32015.C2015o-32014C20151+32013C20152-…+3C20152014 -C20152015?

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 2: Trong khai triển nhị thức (a + 2)n + 6, (n ∈ N). Có tất cả 17 số hạng. Vậy n bằng:

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 3: Tìm hệ số của x12 trong khai triển (2x - x2)10

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 4: Tìm số hạng chứa x3 trong khai triển Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 5: Viết khai triển theo công thức nhị thức Niu - Tơn:

a) (a + 2b)                 

b) (a - √2)6                  

c) (x - 1/x)13

Lời giải:

a) Theo dòng 5 của tam giác Pascal, ta có:

(a + 2b)5 = a5 + 5a4(2b) + 10a3(2b)2 + 10a2(2b)3 + 5a(2b)4 + (2b)5
= a5 + 10a4b + 40a3b2 + 80a2b3 + 80ab4 + 32b5

b) Theo dòng 6 của tam giác Pascal, ta có:

(a - √2)6 = [a + (-√2)]6 = a6 + 6a5 (-√2) + 15a4 (-√2)2 + 20a3 (-√2)3 + 15a2 (-√2)4 + 6a(-√2)5 + (-√2)6 = a6 - 6√2a5 + 30a4 - 40√2a3 + 60a2 - 24√2a + 8.

c) Theo công thức nhị thức Niu – Tơn, ta có:

b-1a-1

Nhận xét: Trong trường hợp số mũ n khá nhỏ (chẳng hạn trong các câu a) và b) trên đây) thì ta có thể sử dụng tam giác Pascal để tính nhanh các hệ số của khai triển.

Bài 6 Tìm hệ số của x3 trong khai triển của biểu thức:b-1a-2

Lời giải:

b-1a-7

Trong tổng này, số hạng Ck6 . 2k . x6 - 3k có số mũ của x bằng 3 khi và chỉ khi
b-1a-8

Do đó hệ số của x3 trong khai triển của biểu thức đã cho là: b-1a-9 = 2 . 6 = 12

Bài 7: Tìm hệ số của x5 trong khai triển : P(x) = (1 + x) + 2(1 + x)2 + ... + 8(1 + x)8.

Lời giải:

Các biểu thức (1 + x), (1 + x)2, ⋯, (1 + x)4 không chứa số hạng chứa x5.

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 8 Tìm số nguyên dương n thỏa mãn Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

 

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 9 Tính Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 10 Tìm số hạng không chứa x trong khai triển

Bài tập trắc nghiệm Đại số và Giải tích 11 | Câu hỏi trắc nghiệm Đại số và Giải tích 11

 

 

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

III. Bài tập vận dụng

Bài 1 Biết hệ số của x2  trong khai triển của (1 - 3x)n là 90. Tìm n.

Bài 2 Tìm số hạng không chứa x trong khai triển của (x3 + )8

Bài 3 Từ khai triển biểu thức (3x – 4)17 thành đa thức, hãy tính tổng các hệ số của đa thức nhận được.\

Bài 4 Chứng minh rằng:

a) 1110 – 1 chia hết cho 100;

b) 101100– 1 chia hết cho 10 000;

c) 10[(1+10)100(110)100] là một số nguyên

Bài 5 Viết khai triển theo công thức nhị thức Niu - Tơn:

a) (a + 2b)5                                   

b) (a - √2)6                                   

c) (x - 1/x)13

Bài 6 Tìm hệ số của x3 trong khai triển của biểu thức:{{\left( x+\frac{2}{{{x}^{2}}} \right)}^{6}}

Bài 7 Biết hệ số của x2 trong khai triển của (1 - 3x)n là 90. Tìm n.

Bài 8 Tìm số hạng không chứa x trong khai triển của (x3 + 1/x)8

Bài 9 Từ khai triển biểu thức (3x – 4)17 thành đa thức, hãy tính tổng các hệ số của đa thức nhận được?

Bài 10 Chứng minh rằng:

a) 1110 – 1 chia hết cho 100;

b) 101100 – 1 chia hết cho 10 000;

c) \sqrt{10}[(1 + \sqrt{10})100 – (1- \sqrt{10})100] là một số nguyên.

Xem thêm các bài Chuyên đề Toán lớp 11 hay, chi tiết khác:

Chuyên đề Quy tắc đếm

Chuyên đề Hoán vị - Chỉnh hợp - Tổ hợp

Chuyên đề Phép thử và biến cố

Chuyên đề Xác suất của biến cố

Chuyên đề Ôn tập chương 2

1 985 18/08/2022
Tải về


Xem thêm các chương trình khác: