Chuyên đề Ôn tập chương 3 (2022) - Toán 11

Với Chuyên đề Ôn tập chương 3 (2022) - Toán 11 mới nhất được biên soạn bám sát chương trình Toán 11 giúp các bạn học tốt môn Toán hơn.

1 625 lượt xem
Tải về


Chuyên đề Ôn tập chương 3 - Toán 11

A. Lý thuyết.

1. Vecto trong không gian

1.1. Định nghĩa và các phép toán về vecto trong không gian.

1.1.1. Định nghĩa

Vecto trong không gian là một đoạn thẳng có hướng. Kí hiệu AB chỉ vecto có điểm đầu là A, điểm cuối là B. Vecto còn được kí hiệu là a;  b;  x;  y....

- Các khái niệm liên quan đến vecto như giá của vecto, độ dài của vecto, sự cùng phương, cùng hướng của vecto, vecto – không, sự bằng nhau của hai vecto ….được định nghĩa tương tự như trong mặt phẳng.

1.1.2. Phép cộng và phép trừ vecto trong không gian,

- Phép cộng và phép trừ của hai vecto trong không gian được định nghĩa tương tự như phép cộng và phép trừ hai vecto trong mặt phẳng.

- Phép cộng vecto trong không gian cũng có các tính chất như phép cộng vecto trong mặt phẳng. Khi thực hiện phép cộng vecto trong không gian ta vẫn có thể áp dụng quy tắc ba điểm, quy tắc hình bình hành như đối với vecto trong hình học phẳng.

Ví dụ 1. Cho tứ diện ABCD. Chứng minh DA+​  BC=  BA  +​  DC

Lời giải:

Lý thuyết Vectơ trong không gian chi tiết – Toán lớp 11 (ảnh 1)

Áp dụng quy tắc ba điểm ta có: DA  =DC+CA

Ta có: 

DA+​  BC=DC+CA   +​  BC=  DC+​  BC+​  CA=  DC  +​  BA

( điều phải chứng minh).

1.2. Điều kiện đồng phẳng của ba vecto.

1.2.1. Khái niệm về sự đồng phẳng của ba vecto trong không gian.

Trong không gian cho ba vecto a;b;  c  0. Nếu từ một điểm O bất kì ta vẽ: OA  =a;OB  =b;OC=  c thì có thể xảy ra hai trường hợp:

+ Trường hợp các đường thẳng OA; OB; OC không cùng nằm trong một mặt phẳng, khi đó ta nói rằng ba vecto a;b;  c   không đồng phẳng.

+ Trường hợp các đường thẳng OA; OB; OC cùng nằm trong một mặt phẳng thì ta nói rằng ba vecto a;b;  c   đồng phẳng.

Trong trường hợp này, giá của các vecto a;b;  c   luôn luôn song song với một mặt phẳng.

Lý thuyết Vectơ trong không gian chi tiết – Toán lớp 11 (ảnh 1)

Lý thuyết Vectơ trong không gian chi tiết – Toán lớp 11 (ảnh 1)

- Chú ý. Việc xác định sự đồng phẳng hoặc không đồng phẳng của ba vecto nói trên không phụ thuộc vào việc chọn điểm O.

1.2.2. Định nghĩa:

Trong không gian ba vecto được gọi là đồng phẳng nếu các giá của chúng cùng song song với một mặt phẳng.

Lý thuyết Vectơ trong không gian chi tiết – Toán lớp 11 (ảnh 1)

Ví dụ 2. Cho hình hộp ABCD.EFGH. Gọi I là tâm hình bình hành  ABEF  và K  là tâm hình bình hành BCGF. Chứng minh BD,IK,GF đồng phẳng.

Lý thuyết Vectơ trong không gian chi tiết – Toán lớp 11 (ảnh 1)

Lời giải:

Xét  tam giác FAC có I ; K lần lượt là trung điểm của AF và FC nên IK là  đường trung bình của tam   giác.

 IK// AC nên  IK// mp ( ABCD) .

Vì BC// GF nên GF // mp( ABCD)

Ta có : IK//(ABCD)GF//(ABCD)BD(ABCD)  

BD,IK,GF đồng phẳng.

1.2.3. Điều kiện để ba vecto đồng phẳng.

Định lí 1.

Trong không gian cho hai vecto a;b không cùng phương và vecto c. Khi đó, ba vecto a;  b;  c đồng phẳng khi và chỉ khi có cặp số m; n sao cho c  =  ma+n  b. Ngoài ra, cặp số m; n là suy nhất.

- Định lí 2.

Trong không gian cho ba vecto không đồng phẳng a;  b;  c. Khi đó, với mọi vecto ta đều tìm được một bộ ba số m, n, p sao cho x  =ma+n  b+p  c. Ngoài ra, bộ ba số m; n; p là duy nhất.

Ví dụ 3. Cho hình lăng trụ ABC.A’B’C’ gọi M  là trung điểm của  BB’ . Đặt CA  =a;  CB=b;AA'=  c. Phân tích vecto AM theo a;  b;  c.

Lời giải:

Lý thuyết Vectơ trong không gian chi tiết – Toán lớp 11 (ảnh 1)

 Áp dụng quy tắc 3 điểm và quy tắc hiệu hai vecto ta có :

AM=AB+BM=CBCA+12BB' (vì  M là  trung  điểm của BB’) .

=ba+12AA'=ba+12c

2. Hai đường thẳng vuông góc

2.1. Tích vô hướng của hai vecto trong không gian.

2.1.1. Góc giữa hai vecto trong không gian.

- Định nghĩa.  Trong không gian, cho u;  v là hai vecto khác vecto- không. Lấy một điểm A bất kì, gọi B và C là hai điểm sao cho AB=u;  AC  =v. Khi đó, ta gọi góc BAC^  (00  BAC^  1800) là góc giữa hai vecto u;  v trong không gian.

Kí hiệu là (u;  v).

Lý thuyết Hai đường thẳng vuông góc chi tiết – Toán lớp 11 (ảnh 1)

2.2. Tích vô hướng của hai vecto trong không gian.

- Định nghĩa:

Trong không gian có hai vecto u;  v đều khác vecto- không . Tích vô hướng của hai vecto là một số, kí hiệu là u;  v, được xác định bởi công thức: u.v  =u.v.cos u;  v

Trường hợp u=  0 hoặc v=  0 ta quy ước: u.  v = 0.

Ví dụ 1. Cho hình chóp S.ABC có SA= SB= SC và ASB^  =  BSC^  =  CSA^. Hãy xác định góc giữa cặp vectơ SC và AB?

Lời giải :

Lý thuyết Hai đường thẳng vuông góc chi tiết – Toán lớp 11 (ảnh 1)

Ta có

SC.AB=SC.SBSA=SC.SBSC.SA=SC.SB.cosSC.SBSC.SA.cosSC.SA=SC.SB.cosBSC^ SC.SA.cosASC^

Vì SA= SB= SC và ASB^  =  BSC^  =  CSA^SC.AB=0

Ta lại có:

SC.SA=SC.SA.cosSC,SAcosSC,SA=0

Do đó SC;  AB=900.

2.2.1. Định nghĩa.

Nếu a khác vecto - không được gọi là vecto chỉ phương của đường thẳng d nếu giá của vecto a song song hoặc trùng với đường thẳng d.

Lý thuyết Hai đường thẳng vuông góc chi tiết – Toán lớp 11 (ảnh 1)

2.2.2 Nhận xét.

a) Nếu a là vecto chỉ phương của đường thẳng d thì vecto ka   (k0) cũng là vecto chỉ phương của d.

b) Một đường thẳng d trong không gian hoàn toàn được xác định nếu biết một điểm A thuộc đường thẳng d và một vecto chỉ phương của nó.

c) Hai đường thẳng song song với nhau khi và chỉ khi chúng là hai đường thẳng phân biệt và có hai vecto chỉ phương cùng phương.

2.3. Góc giữa hai đường thẳng trong không gian.

2.3.1. Định nghĩa:

Góc giữa hai đường thẳng a và b trong không gian là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm và lần lượt song song với a và b.

Lý thuyết Hai đường thẳng vuông góc chi tiết – Toán lớp 11 (ảnh 1)

2.3.2. Nhận xét.

a) Để xác định góc giữa hai đường thẳng a và b ta có thể lấy điểm O thuộc một trong hai đường thẳng đó rồi vẽ một đường thẳng qua O và song song với đường thẳng còn lại.

b) Nếu u là vecto chỉ phương của đường thẳng a và là v vecto chỉ phương của đường thẳng b và (u;  v)=  α thì góc giữa hai đường thẳng a và b bằng  nếu 00α900 và bằng 1800α nếu 900<α1800.

Nếu a và b song song hoặc trùng nhau thì góc giữa chúng bằng 00.

Ví dụ 2. Cho hình lập phương ABCD.A’B’C’D’.  Tính góc giữa AC và DA’

Lời giải:

Lý thuyết Hai đường thẳng vuông góc chi tiết – Toán lớp 11 (ảnh 1)

Gọi a là độ dài cạnh hình lập phương.

Khi đó, tam giác AB’C đều (AB’ = B’C= CA = a2)

Do đó B'CA^  =600.

Lại có, DA’ song song CB’  nên  

(AC ; DA’) = (AC ; CB’) = B'CA^  =600.

2.4. Hai đường thẳng vuông góc.

2.4.1. Định nghĩa.

Hai đường thẳng được gọi là vuông góc nếu góc giữa chúng bằng 900.

Ta kí hiệu hai đường thẳng a và b vuông góc với nhau là a    b.

2.4.2. Nhận xét

a) Nếu u;  v lần lượt là các vecto chỉ phương của hai đường thẳng a và b thì a    bu.v   =0.

b) Cho hai đường thẳng song song. Nếu một đường thẳng vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.

c) Hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau.

Ví dụ 3.  Cho tứ diện ABCD có AB= AC= AD  và BAC^  =  BAD^=600;  CAD^=  900. Gọi I và J lần lượt là trung điểm của AB  và CD. Chứng minh hai đường thẳng AB và IJ vuông góc với nhau.

Lời giải:

Lý thuyết Hai đường thẳng vuông góc chi tiết – Toán lớp 11 (ảnh 1)

Xét tam giác ICD có J là trung điểm đoạn CD  IJ=12IC+ID.

Tam giác ABC có AB = AC và BAC^=600 nên tam giác ABC đều

CIAB.  (1)

Tương tự, ta có tam giác ABD  đều nên DI  AB.  ( 2)

Từ  (1) và (2) ta có :

IJ.AB=12IC+ID.AB          =12IC.AB+12ID.AB=0IJ  ABIJAB

3. Đường thẳng vuông góc với mặt phẳng.

3.1. Định nghĩa

- Đường thẳng d được gọi là vuông góc vơi mặt phẳng (α) nếu d vuông góc với mọi đường thẳng a nằm trong mặt phẳng (α).

Lý thuyết Đường thẳng vuông góc với mặt phẳng chi tiết – Toán lớp 11 (ảnh 1)

- Khi d vuông góc với (α) ta còn nói (α) vuông góc với d hoặc d và (α) vuông góc với nhau và kí hiệu là d(α)

3.2. Điều kiện để đường thẳng vuông góc mặt phẳng

- Định lí: Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau cùng thuộc một mặt phẳng thì nó vuông góc với mặt phẳng ấy.

Hệ quả. Nếu một đường thẳng vuông góc với hai cạnh của một tam giác thì nó cũng vuông góc với cạnh thứ ba của tam giác đó.

Ví dụ 1. Cho tứ diện ABCD có hai tam giác ABC và ABD là các tam giác đều. Gọi I là trung điểm của AB. Chứng minhh AB vuông góc với mặt phẳng (CDI).

Lời giải

Lý thuyết Đường thẳng vuông góc với mặt phẳng chi tiết – Toán lớp 11 (ảnh 1)

Khi đó, AB(CDI) trong đó I là trung điểm của AB.

Thật vậy, vì ABC và ABD là các tam giác đều nên đường trung tuyến đồng thời là đường cao : CIAB;  DIAB

Suy ra: AB(CDI).

3.3. Tính chất.

- Tính chất 1. Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.

- Mặt phẳng trung trực của một đoạn thẳng.

Người ta gọi mặt phẳng đi qua trung điểm I của đoạn thẳng AB và vuông góc với đường thẳng AB là mặt phẳng trung trực của đoạn thẳng AB.

- Tính chất 2. Có duy nhất một đường thẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước.

3.4. Liên hệ giữa quan hệ song song và quan hệ vuông góc của đường thẳng và mặt phẳng.

- Tính chất 1.

a) Cho hai đường thẳng song song.Mặt phẳng nào vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.

b) Hai đường thẳng phân biệt cùng vuông góc  với một mặt phẳng thì song song với nhau.

Lý thuyết Đường thẳng vuông góc với mặt phẳng chi tiết – Toán lớp 11 (ảnh 1)

- Tính chất 2.

a) Cho hai mặt phẳng song song. Đường thẳng nào vuông  góc với mặt phẳng này thì cũng vuông  góc với mặt phẳng kia.

b) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.

Lý thuyết Đường thẳng vuông góc với mặt phẳng chi tiết – Toán lớp 11 (ảnh 1)

-  Tính chất 3.

a) Cho đường thẳng a và mặt phẳng (α) song song với nhau. Đường thẳng nào vuông góc với (α) thì cũng vuông góc với a.

b) Nếu một đường thẳng và một mặt phẳng ( không chứa đường thẳng đó) cùng vuông góc với một đường thẳng khác thì chúng song song với nhau.

Lý thuyết Đường thẳng vuông góc với mặt phẳng chi tiết – Toán lớp 11 (ảnh 1)

Ví dụ 2. Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA(ABCD). Gọi I; J; K lần lượt là trung điểm của  AB, BC và  SBChứng minh:

a) (IJK) // (SAC).

b) BD(SAC)

c) BD(IJK).

 Lời giải:

Lý thuyết Đường thẳng vuông góc với mặt phẳng chi tiết – Toán lớp 11 (ảnh 1)

a) Tam giác ABC có IJ Là  đường trung bình của tam  giác  nên  IJ // AC   (1)

Tam giác  SAB có IK là đường trung bình của tam giác  nên IK// SA  (2)

Từ (1) và (2) suy ra: (IJK) // (SAC) .

b) Do  BD  AC;  BDSA

Mà BD, AC  (SAC) nên  BD(SAC)

c) Do BD(SAC) và (IJK) // ( SAC) nên BD(IJK)

3.5. Phép chiếu vuông góc và định lí ba đường vuông góc.

3.5.1. Phép chiếu vuông góc.

Cho đường thẳng ∆ vuông góc với mặt phẳng (α). Phép chiếu song song theo phương của ∆ lên mặt phẳng (α) được gọi là phép chiếu vuông góc lên mặt phẳng (α).

Lý thuyết Đường thẳng vuông góc với mặt phẳng chi tiết – Toán lớp 11 (ảnh 1)

Nhận xét: Phép chiếu vuông góc lên một mặt phẳng là trường hợp đặc biệt của phép chiếu song song nên có đầy đủ các tính chất của phép chiếu song song.

3.5.2. Định lí ba đường vuông góc.

Cho đường thẳng a nằm trong mặt phẳng (α) và b là đường thẳng không thuộc (α) đồng thời không vuông góc với (α). Gọi b’ là hình chiếu vuông góc của b trên (α). Khi đó, a vuông góc với b khi và chỉ khi a vuông góc với b’.

3.5.3. Góc giữa đường thẳng và mặt phẳng.

Định nghĩa:

Cho đường thẳng d và mặt phẳng (α).

+ Trường hợp đường thẳng d vuông góc với mặt phẳng (α) thì ta nói rằng góc giữa đường thẳng d và mặt phẳng (α) bằng 900.

+ Trường hợp đường thẳng d không vuông góc với mặt phẳng (α) thì góc giữa d và hình chiếu d’ của nó trên (α) gọi là góc giữa đường thẳng d và mặt phẳng (α).

Khi d không vuông góc với (α) thì d cắt (α) tại điểm O, ta lấy một điểm A tùy ý trên d khác điểm O. Gọi H là hình chiếu vuông góc của A lên (α) và φ là góc giữa d và (α) thì AOH^  =  φ

Chú ý: Nếu là góc giữa d và mặt phẳng (α) thì ta luôn có: 00  φ  900.

Ví dụ 3. Cho hình chóp S.ABC có đáy ABC là tam giác vuông cạnh huyền BC = a. Hình chiếu vuông góc của S lên ( ABC) trùng với trung điểm BC. Biết SB = a. Tính số đo của góc giữa SA và ( ABC).

Lời  giải:

Lý thuyết Đường thẳng vuông góc với mặt phẳng chi tiết – Toán lớp 11 (ảnh 1)

Gọi H  là trung điểm của  BC.

Vì tam giác ABC vuông góc tại A có đường trung tuyến AH nên suy ra AH=BH=CH=12BC=a2

Ta có: 

SHABCSH=SB2BH2=a32SA,ABC^=  (SA;  AH)=SAH^=αtanα=SHAH=3α=60°

4. Hai mặt phẳng vuông góc

4.1. Góc giữa hai mặt phẳng

4.1.1. Định nghĩa:

Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó.

- Nếu hai mặt phẳng song song hoặc trùng nhau thì ta nói rằng góc giữa hai mặt phẳng đó bằng 00.

4.1.2. Cách xác định góc giữa hai mặt phẳng cắt nhau.

- Giả sử 2 mặt phẳng (α) và (β) cắt nhau theo giao tuyến c. Từ một điểm I bất kì trên c ta dựng trong (α) đường thẳng a vuông góc với c và dựng trong (β) đường thẳng b vuông góc với c.

- Khi đó, góc giữa hai mặt phẳng (α) và (β) là góc giữa hai đường thẳng a và b.

Lý thuyết Hai mặt phẳng vuông góc chi tiết – Toán lớp 11  (ảnh 1)

Ví dụ 1. Cho hình chóp S. ABC có SA  (ABC);ABBC, gọi I  là trung điểm BC. Ta xác định góc giữa hai mặt phẳng ( SBC) và ( ABC) :

Lý thuyết Hai mặt phẳng vuông góc chi tiết – Toán lớp 11  (ảnh 1)

Ta có:

BCSA,BCABBC  (SAB)BCSBSBCABC=BCABBC,ABABCSBBC,SBSBCSBC,ABC^=SBA^

4.1.3. Diện tích hình chiếu của một đa giác.

Cho đa giác H nằm trong mặt phẳng (α) có diện tích S và H’ là hình chiếu vuông góc của H lên mp(β).

Khi đó, diện tích S’ của H’ được tính theo công thức:

S'= ​S.cosφ với là góc giữa (α)  và (β).

4.2. Hai mặt phẳng vuông góc.

4.2.1. Định nghĩa.

Hai mặt phẳng gọi là vuông góc với nhau nếu góc giữa hai mặt phẳng đó là góc vuông.

Nếu hai mặt phẳng (α) và (β) vuông góc với nhau ta kí hiệu: (α)(β).

4.2.2. Các định lí.

- Định lí 1.

Điều kiện cần và đủ để hai mặt phẳng vuông góc với nhau là mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia.

- Hệ quả 1.

Nếu hai mặt phẳng vuông góc với nhau thì bất cứ đường thẳng nào nằm trong mặt phẳng này và vuông góc với giao tuyến thì vuông góc với mặt phẳng kia.

- Hệ quả 2.

Cho hai mặt phẳng (α) và (β) vuông góc với nhau. Nếu từ một điểm thuộc mặt phẳng (α) ta dựng một đường thẳng vuông góc với mặt phẳng (β) thì đường thẳng này nằm trong mặt phẳng (α).

Ví dụ 2. Cho tứ diện ABCD có . Trong  tam  giác  BDC vẽ các đường cao BE và DF cắt nhau ở O. Trong( ADC) vẽ  tại K. Chứng minh

a) (ADC)(ABE)

b) (ADC)  (DFK)

c) (BCD)(ABE)

Lời giải:

Lý thuyết Hai mặt phẳng vuông góc chi tiết – Toán lớp 11  (ảnh 1)

a) Ta có 

CDBECDABCDABECDADCADCABE

b) Ta có:

DFBCDFABDFABC

Mà SCABCDFACDKAC

ACDFKACADCADCDFK

c) Ta có 

CDBECDABCDABECDBDCBDCABE

4.3. Hình lăng trụ đứng, hình hộp chữ nhật, hình lập phương.

4.3.1. Định nghĩa.

Hình lăng trụ đứng là hình lăng trụ có các cạnh bên vuông góc với các mặt đáy. Độ dài cạnh bên được gọi là chiều cao của hình lăng trụ đứng.

Hình lăng trụ đứng có đáy là tam giác, tứ giác, ngũ giác… được gọi là hình lăng trụ đứng tam giác, hình lăng trụ đứng tứ giác, hình lăng trụ đứng ngũ giác…

- Hình lăng trụ đứng có đáy là một đa giác đều được gọi là hình lăng trụ đều.

Ta có các loại hình lăng trụ đều như  lăng trụ tam giác đều, lăng trụ tứ giác đều..

- Hình lăng trụ đứng có đáy là hình bình hành được gọi là hình hộp đứng.

- Hình lăng trụ đứng có đáy là hình chữ nhật được gọi là hình hộp chữ nhật.

- Hình lăng trụ đứng có đáy là hình vuông và các mặt bên đều là hình vuông được gọi là hình lập phương.

4.3.2. Nhận xét

Các mặt bên của hình lăng trụ đứng luôn luôn vuông góc với mặt phẳng đáy và là những hình chữ nhật.

4.4. Hình chóp đều và hình chóp cụt đều.

4.4.1. Hình chóp đều.

Cho hình chóp đỉnh S có đáy là đa giác A1A2…An và H là hình chiếu vuông góc của S trên mặt phẳng đáy (A1A2…An). Khi đó, đoạn thẳng SH gọi là đường cao của hình chóp và H là chân đường cao của hình chóp.

Định nghĩa. Một hình chóp được gọi là hình chóp đều nếu nó có đáy là một đa giác đều và có chân đường cao trùng với tâm của đa giác đáy.

- Nhận xét:

a) Hình chóp đều có các mặt bên là những tam giác cân bằng nhau. Các mặt bên tạo với mặt đáy các góc bằng nhau.

b) Các cạnh bên của hình chóp đều tạo với mặt đáy các góc bằng nhau.

4.4.2. Hình chóp cụt đều.

- Định nghĩa: Phần của hình chóp đều nằm giữa đáy và một thiết diện song song với đáy cắt các cạnh bên của hình chóp đều được gọi là hình chóp cụt đều.

- Ví dụ 3: Hình ABCD.A’B’C’D’ ở hình dưới là một hình chóp cụt đều. Hai đáy của hình chóp cụt đều là 2 đa giác đều và đồng dạng với nhau.

Lý thuyết Hai mặt phẳng vuông góc chi tiết – Toán lớp 11  (ảnh 1)

Nhận xét. Các mặt bên của hình chóp cụt đều là những hình thang cân và các cạnh bên của hình chóp cụt đều có độ dài bằng nhau.

5. Khoảng cách

5.1. Khoảng cách từ một điểm đến một đường thẳng, một mặt phẳng.

5.1.1. Khoảng cách từ một điểm đến một đường thẳng

Cho điểm O và đường thẳng a. Trong mặt phẳng (O; a), gọi H là hình chiếu vuông góc của O lên a. Khi đó, khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến đường thẳng a.

Kí hiệu: d(O; a).

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Ví dụ 1. Cho hình lập phương ABCD. A'B'C'D' cạnh a. Tính khoảng cách từ B tới đường thẳng DB'.

Lời giải:

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Từ giả thuyết ta suy ra:  BD=  BC2+​ CD2=a2

Gọi H là hình chiếu của B lên DB' ta có: BH = d (B, DB').

Xét tam giác BB'D vuông tại B ta có:

1BH2=1B'B2+1BD2=1a2+1a22=32a2BH=a63

5.1.2. Khoảng cách từ một điểm đến một mặt phẳng

Cho điểm O và mặt phẳng (α). Gọi H là hình chiếu vuông góc của O lên mặt phẳng (α). Khi đó khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến mặt phẳng (α) và được kí hiệu là d(O; (α)).

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Ví dụ 2. Cho hình chóp S. ABC có SA  (ABC), ∆ABC là tam giác đều cạnh  a và tam giác SAB cân. Tính khoảng cách h từ điểm A đến mặt phẳng (SBC).

Lời giải:

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Gọi D là trung điểm BC. Do tam giác ABC đều nên AD  BC (1).

Trong tam giác SAD, kẻ AH  SD (2).

Do SAABCSABCADBCSAAD=ABCSADSBCSAD (3).

Từ (2) và (3), ta suy ra AH vuông góc với (SBC) nên d(A ; (SBC))= AH.

Theo giả thiết, ta có SA = AB = a, AD=a32 (đường cao trong tam giác đều cạnh a).

Tam giác SAD vuông nên

 1AH2=1SA2+1AD21AH2=1a2+43a21AH2=73a2AH=a37

5.2. Khoảng cách giữa đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song.

5.2.1. Khoảng cách giữa đường thẳng và măt phẳng song song.

- Định nghĩa:

Cho đường thẳng a song song với mặt phẳng (α). Khoảng cách giữa đường thẳng a và mặt phẳng (α) là khoảng cách từ một điểm bất kì thuộc a đến mặt phẳng (α).

Kí hiệu là d(a; (α)) .

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

5.2.2. Khoảng cách giữa hai mặt phẳng song song.

- Định nghĩa: Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì của mặt phẳng này đến mặt phẳng kia.

- Kí hiệu: d((α); (β)).

Như vậy: d((α); (β)) = d(M; (β)) = d(M’; (α)).

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

5.3. Đường vuông góc chung và khoảng cách hai đường thẳng chéo nhau.

5.3.1. Định nghĩa.

a) Đường thẳng ∆ cắt hai đường thẳng chéo nhau a, b và cùng vuông góc  với mỗi đường thẳng ấy được gọi là đường vuông góc chung của a và b.

b) Nếu đường vuông góc chung ∆ cắt hai đường thẳng chéo nhau a, b lần lượt tại M; N thì độ dài đoạn thẳng MN gọi là khoảng cách giữa hai đường thẳng chéo nhau a và b.

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

5.3.2. Cách tìm đường vuông góc chung của hai đường thẳng chéo nhau.

- Cho hai đường thẳng chéo nhau a và b. Gọi (β) là mặt phẳng chứa b và song song với a; a’ là hình chiếu vuông góc của a trên mặt phẳng (β).

Vì a// (β) nên a// a’. Do đó; a’ cắt b tại 1 điểm là N

Gọi (α) là mặt phẳng chứa a và a’; ∆ là đường thẳng đi qua N và vuông góc với (β). Khi đó, (α) vuông góc (β).

Như vậy.∆ nằm trong (α) nên cắt đường thẳng a tại M và cắt đường thẳng b tại N.Đồng thời, ∆ vuông góc với cả a và b.

Do đó, ∆ là đường vuông góc chung của a và b.

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Ví dụ 3. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng chéo nhau SA và BC.

Lời giải :

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Do SABABCD và  BC    ABBCSAB.

Vì tam giác SAB đều nên gọi M là trung điểm của SA thì BMSA nên BM là đoạn vuông góc chung của BC và SA.

Vậy dSA;BC=BM=a32.

5.3.3. Nhận xét

a) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó đến mặt phẳng song song với nó và chứa đường thẳng còn lại.

b) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó.

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Ví dụ 4. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy, SA= a. Khoảng cách giữa hai đường thẳng SB và CD là

Lời giải :

Lý thuyết Khoảng cách chi tiết – Toán lớp 11 (ảnh 1)

Vì SAABCD  SAAD.

Ta có: SAADABADADSABdD,SAB=DA.

Vì CDSABCD  // ABABSAB

Suy ra:  CD // (SAB) nên :

d(CD, SB) = d(CD, (SAB)) = d(D, (SAB)) = DA = a,

B. Bài tập tự luyện

Bài 1: Cho tứ diện ABCD có: AB = AC = AD, góc BAC bằng góc BAD bằng 600. Gọi M và N lần lượt là trung điểm của AB và CD.

a) Góc giữa hai mặt phẳng (ACD) và (BCD) là:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

b) Mặt phẳng (BCD) vuông góc với mặt phẳng   

A. (CDM)      

B. (ACD)

C. (ABN)      

D. (ABC)

c) Đường vuông góc chung của AB và CD là:

 A. BN      

B. AN

C. BC      

D. MN

Lời giải:

Đáp án: a- B, b - C, c - D

a. Các tam giác ABC và ABD là tam giác đều ⇒ tam giác ACD cân

⇒ BN ⊥ CD và AN ⊥ CD ⇒ góc ANB là góc của hai mặt phẳng (ACD) và (BCD)

b. Ta có CD ⊥ (ABN) (do BN ⊥ CD và AN ⊥ CD) ⇒ (BCD) ⊥ (ABN)

c. CD ⊥ MN; AB ⊥ (CDM) (do AB ⊥ CM và AB ⊥ DM)

MN là đường vuông góc chung của AB và CD

Bài 2: Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc.

a) Khằng định nào sau đây đúng?

A. AB ⊥ (ACD).

B. BC ⊥ (ACD).

C. CD ⊥ (ABC).

D. AD ⊥ (BCD).

b) Điểm cách đều bốn điểm A, B, C, D là:

A. trung điểm J của AB

B. trung điểm I của BC

C. trung điểm K của AD

D. trung điểm M của CD

Lời giải:

Đáp án: a - C, b - C

a. Phương án A sai vì chỉ có AB ⊥ CD; phương án B sai vì chỉ có : BC ⊥ CD

Phương án C đúng vì

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Phương án D sai vì AD không vuông góc với đường thẳng nào thuộc mặt phẳng (BCD)

b. CD ⊥ (ABC) vì CD ⊥ AB và CD ⊥ BC

AB ⊥ (BCD) vì AB ⊥ BC và AB ⊥ CD

Phương án A sai vì tam giác ABC không vuông góc tại C nên trung điểm của AB không cách đều ba điểm A, B, C

Phương án B sai vì tam giác ABC không vuông góc tại A nên trung điểm của BC không cách đều ba điểm A, B, C

Phương án C đúng vì tam giác ACD vuông góc tại C nên trung điểm K của AD cách đều ba điểm A, C, D; tam giác ABD vuông góc tại B nên trung điểm K của AD cách đều ba điểm A, B và D

Phương án D sai vì tam giác CBD không vuông góc tại B nên trung điểm của CD không cách đều ba điểm B, C, D

Bài 3: Cho chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

a) Đường thẳng SA vuông góc với

A. SC      

B. SB

C. SD      

D. CD

b) Khoảng cách từ D đến mặt phẳng (SAC) bằng:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Lời giải:

Đáp án: a - A, b - D

a. Tứ giác ABCD là hình vuông nên Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Tam giác SAC có SA = a, SC = a và AC = a√2 ⇒ SAC là tam giác vuông tại S, hay SA ⊥ SC

b. Gọi O là giao của AC và BD ⇒ DO ⊥ (SAC) (do DO ⊥ AC và DO ⊥ SO)

⇒ khoảng cách từ D đến (SAC) bằng DO

Ta có: Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Bài 4: Cho hình lập phương ABCD.A’B’C’D’:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

a) Mặt phẳng (ACC’A’) không vuông góc với mp nào?

b) Hình chiếu vuông góc của A lên mặt phẳng (A’BD) là?

Lời giải:

   a) Ta có: Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   *Vì Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   *Vì Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

   *Vì Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Vậy mp(CDD’C’) không vuông góc với mặt phẳng (ACC’A’).

b) Ta có: BD = A’B = A’D nên tam giác A’BD là tam giác đều.

Lại có: AB = AD = AA’ nên hình chiếu vuông góc của điểm A lên mp(A’BD) là tâm của tam giác BDA’.

Bài 5: Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

a) Đường thẳng AB vuông góc với mp nào?

b) Mặt phẳng (ABD) vuông góc với mặt phẳng nào của tứ diện?

A. Không vuông góc với mặt nào?

B. (ACD)      

C. (ABC)      

D. (BCD)

c) Đường vuông góc chung của AB và CD là:

A. AC      

B. BC      

C. AD      

D. BD

Lời giải:

Đáp án: a - A, b - D, c - B

a. AB ⊥ CD và AB ⊥ CD ⇒ AB ⊥ (BCD)

b. vì AB ⊥ (BCD) ⇒ (ABD) ⊥ (BCD)

c. BC ⊥ AB và BC ⊥ CD ⇒ BC là đường vuông góc chung của AB và CD

Bài 6: Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

a) Hai mặt phẳng (SAB) và (SBC) vuông góc vì.

A. Góc của (SAB) và (SBC) là góc ABC và bằng 900.

B. Góc của (SAB) và (SBC) là góc BAD và bằng 900.

C. AB ⊥ BC; AB ⊂ (SAB) và BC ⊂ (SBC)

D. BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA

b) Hai mặt phẳng (SAC) và (AHK) vuông góc vì:

A. AH ⊥(SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK⊥SD và AK⊥CD)

B. AH ⊥(SBC) (do AH ⊥ SB và AH ⊥ BC); và AK ⊥ (SCD) (do AK⊥SD và AK⊥CD) nên SC⊥(AHK)

C. AH ⊥(SBC) (do AH ⊥ SB và AH ⊥ BC) nên SC⊥(AHK)

D. AK ⊥(SBC) (do AK ⊥ SD và AK ⊥ CD) nên SC ⊥ (AHK)

Lời giải:

Đáp án: a - D, b - B

 a) Phương án A sai vì AB và CB không vuông góc với giao tuyến SB của (SAB) và (SBC), nên góc ABC không phải là góc của hai mặt phẳng này;

Phương án B sai vì góc BAD không phải là góc của hai mặt phẳng (SAB) với mặt phẳng (SBC);

Phương án C sai vì AB ⊥ BC thì chưa đủ để kết luận AB vuông góc với mặt phẳng (SBC);

Phương án D đúng vì : BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA ⇒ (SBC) ⊥ (SAB)

b) Phương án A sai vì hai điều kiện AH ⊥ (SBC) (do AH ⊥ SB và AH ⊥ BC) và AK ⊥ (SCD) (do AK vuông góc với SD và AK ⊥ CD) chưa liên quan đến (SAC); phương án B đúng vì AH ⊥(SBC) và AK ⊥ (SCD) nên SC ⊥ (AHK), từ đó suy ra hai mặt phẳng (AHK) và (SAC) vuông góc; phương án C và D đều sai vì chưa đủ điều kiện kết luận SC ⊥ (AHK)

Bài 7: Cho hai hình vuông ABCD và ABEF cạnh a nằm trên hai mặt phẳng vuông góc.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

a) DE bằng:

A. a√3      

B. a√2

C. 3a2      

D. a(1 + √3)

b) Đường thẳng DE vuông góc

A. Chỉ với AC      

B. Chỉ với BF

C. Chỉ với AC và BF      

D. Hoặc với AC hoặc với BF

Lời giải:

Đáp án: a - A, b - C

EB ⊥(ABCD) vì nó vuông góc với giao tuyến AB của hai mặt phẳng vuông góc đã cho ⇒ CD ⊥ (EBC) ⇒ tam giác ECD vuông tại C.

⇒ DE = a√3. Vậy phương án A đúng

Phương án C đúng vì : hình chiếu của DE lên (ABEF) là AE, mà AE ⊥ BF, suy ra DE ⊥ BF; hình chiếu của DE lên (ABCD) là BD, mà AC ⊥ BD, nên suy ra AC ⊥ DE.

Bài 8: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc giữa cạnh bên với mặt phẳng đáy bằng ∝

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Tang của góc giữa mặt bên và mặt đáy bằng:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Lời giải:

Đáp án: C

Chân đường cao hình chóp đều S.ABCD trùng với tâm O của đáy ABCD. AO là hình chiếu của SA lên (ABCD)

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Gọi M là trung điểm của BC ⇒ OM là hình chiếu của SM lên (ABCD) và MO ⊥ BC.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Bài 9: Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a.

a) Mặt phẳng (ABCD) vuông góc với mặt phẳng:

A. (SAD)      

B. (SBD)

C. (SDC)      

D. (SBC)

b) Giả sử góc BAD bằng 600. Khoảng cách từ điểm S đến mặt phẳng (ABCD) bằng:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

c) Góc giữa mặt bên hình chóp S.ABCD và mặt phẳng đáy có tang bằng:

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Lời giải:

Đáp án: a - B, b - A, c - D 

a. Gọi I là giao điểm của AC và BD.

Từ S vẽ SO ⊥ (ABCD)

⇒ OA = OB = OC (là hình chiếu của các đường xiên bằng nhau)

⇒ O là tâm đường tròn ngoại tiếp tiếp tam giác ABC

Ta có: BI là đường trung tuyến của tam giác ABC nên O nằm trên đường thẳng BI hay 0 ∈ BD

Vậy SO ⊂ (SBD) và SO ⊥(ABCD) ⇒ (SBD) ⊥(ABCD)

b) Tam giác ABD có AB = AD và góc BAD = 600 nên tam giác ABD đều suy ra: BD = a

Ta có; Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Tam giác SOB vuông tại O nên

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

 c. Từ O vẽ OM ⊥ BC ⇒ góc OMS là góc của mặt bên và mặt phẳng đáy

Ta có: ABCD là hình thoi nên Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

II. Bài tập tự luận có lời giải

Bài 1 Trong các mệnh đề sau đây, mệnh đề nào là đúng ?

a) Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song ;

b) Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song ;

c) Mặt phẳng (α) vuông góc với đường thẳng b và b vuông góc với thẳng a, thì a song song với (α).

d) Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì chúng song song.

e) Hai đường thẳng cùng vuông góc với một đường thẳng thì chúng song song.

Lời giải:

a) Đúng

b) Đúng

c) Sai (vì a có thể nằm trong mp(α), xem hình vẽ)

d) Sai, chẳng hạn hai mặt phẳng (α) và (β) cùng đi qua đường thẳng a và a ⊥ mp(P) nên (α) và (β) cùng vuông góc với mp(P) nhưng (α) và (β) cắt nhau.

e) Sai, chẳng hạn a và b cùng ở trong mp(P) và mp(P) ⊥ d. Lúc đó a và b cùng vuông góc với d nhưng a và b có thể không song song nhau.

Bài 2 Trong các điều khẳng định sau đây, điều nào đúng?

a) Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại.

b) Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.

c) Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một mặt phẳng khác cho trước.

d) Đường thẳng nào vuông góc với cả hai đường thẳng chéo nhau cho trước là đường vuông góc chung của hai đường thẳng đó.

Lời giải:

Câu a) đúng. Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại (xem mục c). Tính chất của khoảng cách giữa hai đường thẳng chéo nhau (Bài 5 – chương III).

Câu b) sai. Qua một điểm có vô số mặt phẳng vuông góc với một mặt phẳng cho trước.

Câu c) sai. Vì trong trường hợp đường thẳng vuông góc với mặt phẳng thì ta có vô số mặt phẳng vuông góc với mặt phẳng cho trước vì bất kì mặt phẳng nào chứa đường thẳng cũng đều vuông góc với mặt phẳng cho trước. Để có khẳng định đúng ta phải nói: Qua một đường thẳng không vuông góc với một mặt phẳng có duy nhất một mặt phẳng vuông góc với mặt phẳng đã cho.

Câu d) sai. Vì đường vuông góc chung của hai đường thẳng phải cắt cả hai đường ấy.

Bài 3 Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD).

a) Chứng minh rằng các mặt bên của hình chóp là những tam giác vuông.

b) Mặt phẳng (α) đi qua A và vuông góc với cạnh SC lần lượt cắt SB, AC, SD tại B', C', D'. Chứng minh B'D' song song với BD và AB' vuông góc với SB.

Lời giải:

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Bài 4 Hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và có góc BAD = 60o. Gọi O là giao điểm của AC và BD. Đường thẳng SO vuông góc với mặt phẳng (ABCD) và SO = 3a/4 . Gọi E là trung điểm của đoạn BC và F là trung điểm của đoạn BE.

a) Chứng minh mặt phẳng (SOF) vuông góc với mặt phẳng (SBC).

b) Tính các khoảng cách từ O và A đến mặt phẳng (SBC).

Lời giải:

Giải bài 4 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 4 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Bài 5 Cho tứ diện ABCD có hai mặt ABC và ADC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác ABC vuông tại A có AB =a, AC =b. Tam giác ACD vuông tại D có CD = a.

a) Chứng minh các tam giác BAD và BDC là các tam giác vuông.

b) Gọi I và K lần lượt là trung điểm của AD và BC. Chứng minh IK là đường vuông góc chung của hai đường thẳng AD và BC.

Lời giải:

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Chứng minh tương tự, ta có tam giác AKD là tam giác cân tại K có KI là đường trung tuyến nên đồng thời là đường cao.

⇒ IK ⊥ AD (2)

Từ (1) và (2) suy ra; IK là đường vuông góc chung của hai đường thẳng AD và BC.

Bài 6 Cho khối lập phương ABCD.A'B'C'D' cạnh a.

a) Chứng minh BC' vuông góc với mặt phẳng (A'B'CD)

b) Xác định và tính độ dài đoạn vuông góc chung của AB' và BC'.

Lời giải:

Giải bài 6 trang 122 sgk Hình học 11 | Để học tốt Toán 11 

Giải bài 6 trang 122 sgk Hình học 11 | Để học tốt Toán 11

b) Do AD’ // BC’ nên mp(AB’D’) là mặt phẳng chứa AB’ và song song với BC’.

Ta tìm hình chiếu của BC’ trên mp ( AB’D’).

Gọi E và F lần lượt là tâm của các mặt bên ADD’A’ và BCB’C’.

Giải bài 6 trang 122 sgk Hình học 11 | Để học tốt Toán 11

Vậy H là hình chiếu F trên mp (AB’D’). Qua H ta dựng đường thẳng song song với BC’ thì đường thẳng này chính là hình chiếu của BC’ trên mp(AB’D’).

Đường thẳng qua H song song với BC’ cắt AB’ tại K. Qua K kẻ đường thẳng song song với HF, đường này cắt BC’ tại I. Khi đó, KI chính là đường vuông góc chung của AB’ và BC’.

Giải bài 6 trang 122 sgk Hình học 11 | Để học tốt Toán 11

Bài 7 Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a, có góc BAD = 60o và

a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.

b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).

c) Chứng minh SB vuông góc với BC.

d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tanφ.

Lời giải:

Giải bài tập Toán 11 | Giải Toán lớp 11

a) Tam giác ABD có AB = AD ( do ABCD là hình thoi)

=> Tam giác ABD cân tại A. Lại có góc A= 60o

=> Tam giác ABD đều.

Lại có; SA = SB = SD nên hình chóp S.ABD là hình chóp đều.

* Gọi H là tâm của tam giác ABD

=>SH ⊥ (ABD)

*Gọi O là giao điểm của AC và BD.

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11
Ngoài ra các em học sinh và thầy cô có thể tham khảo thêm nhiều tài liệu hữu ích môn toán khác được cập nhật liên tục tại chuyên trang của chúng tôi.

Nhắc lại định nghĩa vectơ không gian.

Bài 7 Cho hình lăng trụ tam giác ABC.A'B'C'. Hãy kể tên những vectơ bằng vectơ Giải bài 1 trang 120 sgk Hình học 11 | Để học tốt Toán 11 có điểm đầu và điểm cuối là đỉnh của hình lăng trụ.

Lời giải:

Vectơ trong không gian là một đoạn thẳng có định hướng, tức là một đoạn thẳng đã được chỉ rõ điểm đầu và điểm cuối.

Giải bài 1 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Bài 8 Trong không gian cho ba vectơ a , b và c đều khác vectơ 0 . Khi nào ba véc tơ đó đồng phẳng?

Lời giải:

Ba vectơ a→ ; b→ và c→ đồng phẳng nếu thỏa mãn một trong hai điều kiện sau:

- Giá của 3 vector đều cùng song song với mặt phẳng (P).

- 1 trong 3 vec tơ biểu diễn được qua hai vec tơ còn lại,

tức là tồn tại cặp số (m; n) duy nhất thỏa mãn Giải bài 2 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Bài 9 Trong không gian hai đường thẳng không cắt nhau có thể vuông góc với nhau không? Giả sử hai đường thẳng a và b lần lượt có vectơ chỉ phương là vector u→ và vector v→ . Khi nào ta có kết luận a và b vuông góc với nhau?

Lời giải:

+ Trong không gian, hai đường thẳng chéo nhau vẫn có thể vuông góc với nhau.

Đường thẳng a có vectơ chỉ phương u→

Đường thẳng b có vectơ chỉ phương v→

Giải bài 3 trang 120 sgk Hình học 11 | Để học tốt Toán 11

Bài 10 Muốn chứng minh đường thẳng a vuông góc với mặt phẳng (α) có cần chứng minh a vuông góc với mọi đường thẳng của (α) hay không?

Lời giải:

Không cần chứng minh a vuông góc với mọi đường thẳng của mặt phẳng.

Ta có thể chọn một trong số những cách sau để chứng minh đường thẳng vuông góc với mặt phẳng

- Cách 1 : Chứng minh đường thẳng d vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng

- Cách 2 : Sử dụng định lí : "Nếu hai mặt phẳng vuông góc với nhau thì bất kì đường thẳng nào nằm trong mặt phẳng này và vuông góc với giao tuyến thì cũng vuông góc với mặt phẳng kia".

- Cách 3 : Sử dụng định lí : " Nếu hai mặt phẳng phân biệt cùng vuông góc với mặt phẳng thứ 3 thì giao tuyến của chúng cũng sẽ vuông góc với mặt phẳng đó"

III. Bài tập vận dụng

Bài 1 Cho ba mặt phẳng (α),(β),(γ) những mệnh đề nào sau đây đúng?

a) Nếu (α) ⊥ (β) và (α) // () thì (β) ⊥ (γ)

b) Nếu (α) ⊥ (β) và (α) ⊥ (γ) thì (β) // (γ)

Bài 2 Cho hai mặt phẳng  và  vuông góc với nhau. Người ta lấy trên giao tuyến  của hai mặt phẳng đó hai điểm  và  sao cho . Gọi  là một điểm trên  và  là một điểm trên  sao cho  và  cùng vuông góc với giao tuyến  và . Tính độ dài đoạn .

Bài 3 Trong mặt phẳng (α) cho tam giác ABC vuông ở B. Một đoạn thẳng AD vuông góc với (α) tại A. Chứng minh rằng:

a) ABD^ là góc giữa hai mặt phẳng (ABC) và (DBC);

b) Mặt phẳng (ABD) vuông góc với mặt phẳng (BCD);

c) HK//BC với H và K lần lượt là giao điểm của DB và DC với mặt phẳng (P) đi qua A và vuông góc với DB.

Bài 4 Cho hai mặt phẳng  cắt nhau và một điểm  không thuộc  và không thuộc . Chứng minh rằng qua điểm  có một và chỉ một mặt phẳng  vuông góc với  và . Nếu  song song với  thì kết quả trên sẽ thay đổi như thế nào?

Bài 5 Cho hình lập phương ABCD.ABCD. Chứng minh rằng:

a) Mặt phẳng (ABCD) vuông góc với mặt phẳng (BCDA);

b) Đường thẳng AC vuông góc với mặt phẳng (ABD).

Bài 6 Cho hình chóp S.ABCD có đáy ABCD là một hình thoi cạnh a và có SA=SB=SC=a. Chứng minh rằng:

a) Mặt phẳng (ABCD) vuông góc với mặt phẳng (SBD);

b) Tam giác SBD là tam giác vuông.

Bài 7 Cho hình hộp chữ nhật ABCD.ABCD có AB=a,BC=b,CC=c.

a) Chứng minh rằng mặt phẳng (ADCB) vuông góc với mặt phẳng (ABBA).

b) Tính độ dài đường chéo AC theo a,b,c.

Bài 8 Tính độ dài đường chéo của một hình lập phương cạnh alpha.

Bài 9 Nhắc lại nội dung định lí ba đường thẳng vuông góc

Bài 10 Nhắc lại định nghĩa:

a) Góc giữa đường thẳng và mặt phẳng.

b) Góc giữa hai mặt phẳng.

Bài 11 Muốn chứng minh mặt phẳng (α) vuông góc với mặt phẳng (β) ta có thể ?

Xem thêm các bài Chuyên đề Toán lớp 11 hay, chi tiết khác:

Chuyên đề Vectơ trong không gian

Chuyên đề Hai đường thẳng vuông góc

Chuyên đề Đường thẳng vuông góc với mặt phẳng

Chuyên đề Hai mặt phẳng vuông góc

Chuyên đề Khoảng cách

1 625 lượt xem
Tải về


Xem thêm các chương trình khác: