Chuyên đề Khoảng cách (2022) - Toán 11
Với Chuyên đề Khoảng cách (2022) - Toán 11 mới nhất được biên soạn bám sát chương trình Toán 11 giúp các bạn học tốt môn Toán hơn.
Chuyên đề Khoảng cách - Toán 11
A. Lý thuyết.
I. Khoảng cách từ một điểm đến một đường thẳng, một mặt phẳng.
1. Khoảng cách từ một điểm đến một đường thẳng
Cho điểm O và đường thẳng a. Trong mặt phẳng (O; a), gọi H là hình chiếu vuông góc của O lên a. Khi đó, khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến đường thẳng a.
Kí hiệu: d(O; a).
Ví dụ 1. Cho hình lập phương ABCD. A'B'C'D' cạnh a. Tính khoảng cách từ B tới đường thẳng DB'.
Lời giải:
Từ giả thuyết ta suy ra:
Gọi H là hình chiếu của B lên DB' ta có: BH = d (B, DB').
Xét tam giác BB'D vuông tại B ta có:
2. Khoảng cách từ một điểm đến một mặt phẳng
Cho điểm O và mặt phẳng (α). Gọi H là hình chiếu vuông góc của O lên mặt phẳng (α). Khi đó khoảng cách giữa hai điểm O và H được gọi là khoảng cách từ điểm O đến mặt phẳng (α) và được kí hiệu là d(O; (α)).
Ví dụ 2. Cho hình chóp S. ABC có , ∆ABC là tam giác đều cạnh a và tam giác SAB cân. Tính khoảng cách h từ điểm A đến mặt phẳng (SBC).
Lời giải:
Gọi D là trung điểm BC. Do tam giác ABC đều nên (1).
Trong tam giác SAD, kẻ (2).
Do (3).
Từ (2) và (3), ta suy ra AH vuông góc với (SBC) nên d(A ; (SBC))= AH.
Theo giả thiết, ta có SA = AB = a, (đường cao trong tam giác đều cạnh a).
Tam giác SAD vuông nên
II. Khoảng cách giữa đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song.
1. Khoảng cách giữa đường thẳng và măt phẳng song song.
- Định nghĩa: Cho đường thẳng a song song với mặt phẳng (α). Khoảng cách giữa đường thẳng a và mặt phẳng (α) là khoảng cách từ một điểm bất kì thuộc a đến mặt phẳng (α).
Kí hiệu là d(a; (α)) .
2. Khoảng cách giữa hai mặt phẳng song song.
- Định nghĩa: Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì của mặt phẳng này đến mặt phẳng kia.
- Kí hiệu: d((α); (β)).
Như vậy: d((α); (β)) = d(M; (β)) = d(M’; (α)).
III. Đường vuông góc chung và khoảng cách hai đường thẳng chéo nhau.
1. Định nghĩa.
a) Đường thẳng ∆ cắt hai đường thẳng chéo nhau a, b và cùng vuông góc với mỗi đường thẳng ấy được gọi là đường vuông góc chung của a và b.
b) Nếu đường vuông góc chung ∆ cắt hai đường thẳng chéo nhau a, b lần lượt tại M; N thì độ dài đoạn thẳng MN gọi là khoảng cách giữa hai đường thẳng chéo nhau a và b.
2. Cách tìm đường vuông góc chung của hai đường thẳng chéo nhau.
- Cho hai đường thẳng chéo nhau a và b. Gọi (β) là mặt phẳng chứa b và song song với a; a’ là hình chiếu vuông góc của a trên mặt phẳng (β).
Vì a// (β) nên a// a’. Do đó; a’ cắt b tại 1 điểm là N
Gọi (α) là mặt phẳng chứa a và a’; ∆ là đường thẳng đi qua N và vuông góc với (β). Khi đó, (α) vuông góc (β).
Như vậy.∆ nằm trong (α) nên cắt đường thẳng a tại M và cắt đường thẳng b tại N.Đồng thời, ∆ vuông góc với cả a và b.
Do đó, ∆ là đường vuông góc chung của a và b.
Ví dụ 3. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng chéo nhau SA và BC.
Lời giải :
Do và .
Vì tam giác SAB đều nên gọi M là trung điểm của SA thì nên BM là đoạn vuông góc chung của BC và SA.
Vậy .
3. Nhận xét
a) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó đến mặt phẳng song song với nó và chứa đường thẳng còn lại.
b) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó.
Ví dụ 4. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy, SA= a. Khoảng cách giữa hai đường thẳng SB và CD là
Lời giải :
Vì .
Ta có: .
Vì
Suy ra: CD // (SAB) nên :
d(CD, SB) = d(CD, (SAB)) = d(D, (SAB)) = DA = a,
B. Bài tập
I. Bài tập trắc nghiệm
Bài 1 Cho hình chóp tam giác S.ABC với SA vuông góc với (ABC) và SA = 3a. Diện tích tam giác ABC bằng 2a2; BC = a. Khoảng cách từ S đến BC bằng bao nhiêu?
A. 2a
B. 4a
C.3a
D. 5a
Lời giải:
+ Kẻ AH vuông góc với BC
Ta có: SA ⊥ (ABC) ⇒ SA ⊥ BC
Lại có: AH ⊥ BC nên BC ⊥ (SAH)
⇒ SH ⊥ BC và khoảng cách từ S đến BC chính là SH
+ Ta có tam giác vuông SAH vuông tại A nên ta có
Chọn D
Bài 2: Cho hình chóp ABCD có cạnh AC ⊥ (BCD) và BCD là tam giác đều cạnh bằng a. Biết AC = a√2 và M là trung điểm của BD. Khoảng cách từ C đến đường thẳng AM bằng
Lời giải:
+ Do tam giác BCD đều cạnh a nên đường trung tuyến CM đồng thời là đường cao và MC = a√3/2
+ Ta có: AC ⊥ (BCD) ⇒ AC ⊥ CM
Gọi H là chân đường vuông góc kẻ từ C đến AM
Ta có:
Chọn đáp án C
Bài 3: Cho tứ diện SABC trong đó SA; SB; SC vuông góc với nhau từng đôi một và SA = 3a; SB = a; SC = 2a. Khoảng cách từ A đến đường thẳng BC bằng:
Lời giải:
Chọn đáp án B
Xét trong tam giác SBC vuông tại S có SH là đường cao ta có:
+ Ta dễ chứng minh được AB ⊥ (SBC) ⊃ SH ⇒ AS ⊥ SH
⇒ tam giác SAH vuông tại S.
Áp dụng định lsi Pytago trong tam giác ASH vuông tại S ta có:
Chọn B
Bài 4 Trong mặt phẳng (P) cho tam giác đều ABC cạnh a. Trên tia Ax vuông góc với mặt phẳng (P) lấy điểm S sao cho SA = a. Khoảng cách từ A đến (SBC) bằng
Lời giải:
- Gọi M là trung điểm của BC , H là hình chiếu vuông góc của A trên SM
- Ta có BC ⊥ AM ( trong tam giác đều đường trung tuyến đồng thời là đường cao). Và BC ⊥ SA ( vì SA vuông góc với (ABC)). Nên BC ⊥ (SAM) ⇒ BC ⊥ AH
Mà AH ⊥ SM, do đó AH ⊥ (SBC)
Chọn đáp án C
Bài 5: Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình chữ nhật. Biết AD = 2a; SA = a. Khoảng cách từ A đến (SCD) bằng:
Lời giải:
SA ⊥ (ABCD) nên SA ⊥ CD, AD ⊥ CD
Suy ra (SAD) ⊥ CD
Trong ( SAD) kẻ AH vuông góc SD tại H
Khi đó AH ⊥ (SCD)
Chọn đáp án C
Bài 6: Hình chóp đều S.ABC có cạnh đáy bằng 3a cạnh bên bằng 2a. Khoảng cách từ S đến (ABC) bằng :
A. 2a
B. a√3
C. a
D. a√5
Lời giải:
+ Gọi O là trọng tâm tam giác ABC.Do tam giác ABC đều nên O là tâm đường tròn ngoại tiếp tam giác ABC
+ Ta có: SA = SB = SC và OA = OB = OC nên SO là trục đường tròn ngoại tiếp tam giác ABC. Do đó SO ⊥ (ABC)
Chọn đáp án C
II. Bài tập tự luận có lời giải
Bài 1. Cho hình chóp tam giác S.ABC với SA vuông góc với (ABC) và SA = 3a. Diện tích tam giác ABC bằng 2a2; BC = a. Khoảng cách từ S đến BC bằng bao nhiêu?
Lời giải:
Kẻ AH vuông góc với BC
Ta có:
Lại có: nên BC ( SAH)
Suy ra: và khoảng cách từ S đến BC chính là SH .
+ Ta có tam giác vuông SAH vuông tại A nên ta có
Bài 2. Cho hình lăng trụ đứng ABC. A'B'C' có đáy là tam giác ABC vuông tại A có BC = 2a, . Khoảng cách từ AA' đến mặt phẳng (BCC'B') là:
Lời giải:
Ta có AA’//(BCC’B’) nên khoảng cách từ AA' đến mặt phẳng (BCC'B') cũng chính là khoảng cách từ A đến mặt phẳng (BCC'B').
Hạ .
Ta có
Vậy khoảng cách từ AA' đến mặt phẳng (BCC'B') bằng .
Bài 3. Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt đáy (ABCD). Tính khoảng cách từ B đến (SCD).
Lời giải:
Gọi H, M lần lượt là trung điểm của AB và CD .
Suy ra HM =1, và
Vì tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD) nên .
Vì AB//CD nên AB// (SCD).
Do đó d (B; (SCD)) = d(H; (SCD)) = HK với trong (SHM).
Ta có:
Bài 4. Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và đáy là tam giác vuông tại B, AB = SA= a. Gọi H là hình chiếu của A trên SB. Khoảng cách giữa AH và BC bằng:
Lời giải:
Ta có .
(nên ).
Do đó, d(BC, AH) = HB.
Tam giác SAB vuông cân tại A, AH là đường cao
Vậy .
III. Bài tập vận dụng
Bài 1 Cho ba mặt phẳng những mệnh đề nào sau đây đúng?
a) Nếu (α) ⊥ (β) và (α) // () thì (β) ⊥
b) Nếu (α) ⊥ (β) và (α) ⊥ thì (β) //
Bài 2 Cho hai mặt phẳng và vuông góc với nhau. Người ta lấy trên giao tuyến của hai mặt phẳng đó hai điểm và sao cho . Gọi là một điểm trên và là một điểm trên sao cho và cùng vuông góc với giao tuyến và , . Tính độ dài đoạn .
Bài 3 Trong mặt phẳng cho tam giác vuông ở . Một đoạn thẳng vuông góc với tại . Chứng minh rằng:
a) là góc giữa hai mặt phẳng và ;
b) Mặt phẳng vuông góc với mặt phẳng ;
c) với và lần lượt là giao điểm của và với mặt phẳng đi qua và vuông góc với .
Bài 4 Cho hai mặt phẳng , cắt nhau và một điểm không thuộc và không thuộc . Chứng minh rằng qua điểm có một và chỉ một mặt phẳng vuông góc với và . Nếu song song với thì kết quả trên sẽ thay đổi như thế nào?
Bài 5 Cho hình lập phương . Chứng minh rằng:
a) Mặt phẳng vuông góc với mặt phẳng ;
b) Đường thẳng vuông góc với mặt phẳng .
Bài 6 Cho hình chóp có đáy là một hình thoi cạnh và có . Chứng minh rằng:
a) Mặt phẳng vuông góc với mặt phẳng ;
b) Tam giác là tam giác vuông.
Bài 7 Cho hình hộp chữ nhật có .
a) Chứng minh rằng mặt phẳng vuông góc với mặt phẳng .
b) Tính độ dài đường chéo theo .
Bài 8 Tính độ dài đường chéo của một hình lập phương cạnh alpha.
Bài 9 Nhắc lại nội dung định lí ba đường thẳng vuông góc
Bài 10 Nhắc lại định nghĩa:
a) Góc giữa đường thẳng và mặt phẳng.
b) Góc giữa hai mặt phẳng.
Xem thêm các bài Chuyên đề Toán lớp 11 hay, chi tiết khác:
Chuyên đề Vectơ trong không gian
Chuyên đề Hai đường thẳng vuông góc
Chuyên đề Đường thẳng vuông góc với mặt phẳng
Xem thêm các chương trình khác:
- Giải sgk Hóa học 11 | Giải bài tập Hóa học 11 Học kì 1, Học kì 2 (Sách mới)
- Lý thuyết Hóa học 11(sách mới) | Kiến thức trọng tâm Hóa 11
- Giải sbt Hóa học 11 (sách mới) | Sách bài tập Hóa học 11
- Các dạng bài tập Hóa học lớp 11
- Giáo án Hóa học lớp 11 mới nhất
- Tóm tắt tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 11 (hay nhất) | Để học tốt Ngữ Văn 11 (sách mới)
- Soạn văn 11 (ngắn nhất) | Để học tốt Ngữ văn 11 (sách mới)
- Tác giả tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Văn mẫu 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 11 (thí điểm)
- Giải sgk Tiếng Anh 11 | Giải bài tập Tiếng anh 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Tiếng Anh 11 (sách mới) | Sách bài tập Tiếng Anh 11
- Giải sbt Tiếng Anh 11 (thí điểm)
- Giải sgk Lịch sử 11 | Giải bài tập Lịch sử 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Lịch Sử 11(sách mới) | Kiến thức trọng tâm Lịch Sử 11
- Giải Tập bản đồ Lịch sử 11
- Giải sgk Vật Lí 11 | Giải bài tập Vật lí 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Vật Lí 11 (sách mới) | Sách bài tập Vật Lí 11
- Lý thuyết Vật Lí 11 (sách mới) | Kiến thức trọng tâm Vật Lí 11
- Các dạng bài tập Vật Lí lớp 11
- Giáo án Vật lí lớp 11 mới nhất
- Giải sgk Sinh học 11 | Giải bài tập Sinh học 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Sinh học 11 (sách mới) | Kiến thức trọng tâm Sinh 11
- Giải sgk Giáo dục công dân 11
- Lý thuyết Giáo dục công dân 11
- Lý thuyết Địa Lí 11 (sách mới) | Kiến thức trọng tâm Địa lí 11
- Giải Tập bản đồ Địa Lí 11
- Giải sgk Giáo dục quốc phòng - an ninh 11