Chuyên đề Cấp số cộng (2022) - Toán 11
Với Chuyên đề Cấp số cộng (2022) - Toán 11 mới nhất được biên soạn bám sát chương trình Toán 11 giúp các bạn học tốt môn Toán hơn.
Chuyên đề Cấp số cộng - Toán 11
A. Lý thuyết
I. Định nghĩa.
- Cấp số cộng là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ sai, mỗi số hạng đều bằng số hạng đứng ngay trước nó cộng với một số không đổi d.
Số d được gọi là công sai của cấp số cộng.
- Nếu (un) là cấp số cộng với công sai d, ta có công thức truy hồi:
un+1 = un + d với (1)
- Đặc biệt, khi d = 0 thì cấp số cộng là một dãy số không đổi (tất cả các số hạng đều bằng nhau).
- Ví dụ 1. Dãy số hữu hạn: 1, 4, 7, 10, 13, 16, 19 là một cấp số cộng với số hạng đầu u1 = 1; công sai d = 3.
II. Số hạng tổng quát
- Định lí: Nếu cấp số cộng (un) có số hạng đầu u1 và công sai d thì số hạng tổng quát un được xác định bởi công thức:
un = u1 + (n – 1)d với n ≥ 2.
- Ví dụ 2. Cho cấp số cộng (un), biết u1 = 1; d =5.
a) Tìm u10.
b) Số 106 là số hạng thứ bao nhiêu?
Lời giải:
a) Số hạng thứ 10 là u10 = u1 + (10 – 1)d = 1 + 9.5 = 46.
b) Ta có: un = u1 + (n – 1)d. Vì un =106 nên:
106 = 1 + (n – 1).5
105 = (n – 1).5
21 = n – 1 nên n = 22.
Vậy 106 là số hạng thứ 22.
III. Tính chất các số hạng của cấp số cộng.
- Định lí 2:
Trong một cấp số cộng, mỗi số hạng (trừ số hạng đầu và số cuối) đều là trung bình cộng của hai số đứng kề với nó, nghĩa là:
IV. Tổng n số hạng đầu của một cấp số cộng
- Định lí: Cho cấp số cộng (un). Đặt Sn = u1 + u2 + u3 + … + un.
Khi đó: .
- Chú ý: vì un = u1 + (n – 1)d nên ta có: .
Ví dụ 3. Cho cấp số cộng (un) với un = 2n + 5.
a) Tìm u1 và d.
b) Tính tổng 40 số hạng đầu tiên.
c) Biết Sn = 187, tìm n.
Lời giải:
a) Ta có: u1 = 2.1 + 5 = 7; u2 = 2.2 + 5 = 9.
Suy ra, d = u2 – u1 = 2.
b) Tổng 40 số hạng đầu tiên là:
B. Bài tập
I. Bài tập trắc nghiệm
Bài 1: Cho hai cấp số cộng (un): 4, 7, 10, 13, 16, ...và (vn):1, 6, 11, 16, 21, ...Hỏi trong 100 số hạng đầu tiên của mỗi cấp số cộng , có bao nhiêu số hạng chung?
A.10
B. 20
C. 30
D. 40
Lời giải:
Ứng với 20 giá trị của t cho 20 giá trị của n và 20 giá trị của k.
Vậy có 20 số hạng chung của hai dãy
Chọn đáp án B
Bài 2: Cho cấp số cộng (un) thỏa mãn: .
a. Tính số hạng thứ 100 của cấp số ;
A. - 243
B. - 295
C. - 231
D. - 294
b. Tính tổng 15 số hạng đầu của cấp số ;
A. - 244
B. - 274
C. - 253
D. - 285
Lời giải:
Chọn đáp án B
Chọn đáp án D
Bài 3: Ba số hạng liên tiếp của một cấp số cộng có tổng bằng -9 và tổng các bình phương của chúng bằng 29. Tìm số hạng đầu tiên
A. -3 hoặc – 6
B. – 4 hoặc -2
C. -1 hoặc -5
D. -4 hoặc - 7
Lời giải:
Chọn đáp án B
Bài 4: Cho tam giác ABC biết 3 góc của tam giác lập thành một cấp số cộng và có góc nhỏ nhất bằng 25°. Tìm 2 góc còn lại?
A. 65° ; 90°.
B. 75° ; 80°.
C. 60° ; 95°.
D. 55°; 100°.
Lời giải:
Chọn đáp án C
Bài 5: Cho a, b, c theo thứ tự lập thành cấp số cộng, đẳng thức nào sau đây là đúng?
A. a2 + c2 = 2ab + 2bc.
B. a2 - c2 = 2ab - 2bc.
C. a2 + c2 = 2ab - 2bc.
D. a2 - c2 = ab - bc.
Lời giải:
Chọn đáp án B
Bài 6: Tìm x để 3 số : 1 - x; x2 ; x + 1 theo thứ tự lập thành một cấp số cộng?
A. Không có giá trị nào của x.
B. x = ± 2 .
C. x = ± 1 .
D. x = 0
Lời giải:
Chọn đáp án B
Bài 7: Dãy số (un) có phải là cấp số cộng không ? Nếu phải hãy xác định số công sai d, biết rẳng
a. un = 2n + 3
A. d = -2
B. d = 3
C. d = 5
D. d = 2
b. un = -3n + 1
A. d = -2
B. d = 3
C. d = -3
D. d = 1
c. un = n2 + 1
A. d = Ø
B. d = 3
C. d = -3
D. d = 1
d. un = 2/n
A. d = Ø
B. d = 1/2
C. d = -3
D. d = 1
Lời giải:
Bài 8: Cho cấp số cộng có 8 số hạng. Số hạng đầu bằng 3 số hạng cuối bằng 24. Tính tổng các số hạng này
A. 105
B. 27
C. 108
D. 111
Lời giải:
Chọn đáp án C
Bài 9: Cho một cấp số cộng có u1 = -3; u6 = 27. Tìm d ?
A. d = 5
B. d = 7
C. d = 6
D. d = 8
Lời giải:
Chọn đáp án C
Bài 10: Cho 4 số lập thành cấp số cộng. Tổng của chúng bằng 22. Tổng các bình phương của chúng bằng 166. Tổng các lập phương của chúng bằng :
A. 22
B. 166
C. 1752
D. 1408
Lời giải:
Chọn đáp án D
II. Bài tập tự luận có lời giải
Bài 1. Cho cấp số cộng (un) thỏa mãn u1 = 12; u6 = – 18. Tìm u8.
Lời giải:
Theo đề bài ta có;
Suy ra: u8 = u1 + 7d = 12 + 7.(– 6) = – 30.
Bài 2.Tìm số hạng đầu và công sai của cấp số cộng sau biết:
Lời giải:
Vậy số hạng đầu và công sai .
b)
Từ (1) suy ra: u1 = 7 – 3d thay vào (2) ta được:
(7 – 3d + d).(7 – 3d + 3d) = 21
(7 – 2d). 7 = 21
7 – 2d = 3 nên d = 2
Suy ra: u1 = 7 – 3.2 = 1.
Vậy u1 = 1 và công sai d = 2.
Bài 3. Cho cấp số cộng (un) với un = 3n + 1.
a) Tìm u1 và d.
b) Tính tổng 20 số hạng đầu tiên.
c) Biết Sn = 209, tìm n.
Lời giải:
a) Ta có: u1 = 3.1 + 1 = 4; u2 = 3.2 + 1 = 7.
Suy ra, d = u2 – u1 = 3.
b) Tổng 20 số hạng đầu tiên là:
Bài 4: Cho dãy số (un) có u1 = -1; d = 2; Sn = 483 Tính số các số hạng của cấp số cộng?
Lời giải:
Bài 5: Bốn số hạng liên tiếp của một cấp số cộng biết tổng của chúng bằng 20 và tổng các bình phương của chúng bằng 120. Tính tổng của hai số hạng đầu tiên?
Lời giải:
Bài 6: Cho a, b, c theo thứ tự lập thành cấp số cộng, đẳng thức nào sau đây là đúng?
Lời giải:
Bài 7: Tìm x biết x2 + 1, x - 2, 1 - 3x lập thành cấp số cộng ;
Lời giải:
Bài 8: Tìm m để phương trình x3 - 3x2 - 9x + m = 0 có ba nghiệm phân biệt lập thành cấp số cộng.
Lời giải:
Bài 9: Phương trình x4 - 2(m + 1)x2 + 2m + 1 = 0 (1) có bốn nghiệm phân biệt lập thành cấp số cộng.
Lời giải:
Bài 10: Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:
Lời giải:
Ba cạnh a, b, c ( a < b < c) của một tam giác theo thứ tự đó lập thành một cấp số cộng thỏa mãn yêu cầu thì:
III. Bài tập vận dụng
Bài 1: Một rạp hát có 30 dãy ghế, dãy đầu tiên có 25 ghế. Mỗi dãy sau có hơn dãy trước 3 ghế. Hỏi rạp hát có tất cả bao nhiêu ghế?
Bài 2 Cho các dãy số (un) sau :
Hỏi có bao nhiêu dãy số là cấp số cộng ?
Bài 3 Viết ba số xen giữa các số 2 và 22 để được cấp số cộng có 5 số hạng. Tính tổng của ba số viết xen giữa đó ?
Bài 4 Cho tứ giác ABCD biết 4 góc của tứ giác lập thành một cấp số cộng và góc A bằng 30°. Tìm công sai d ?
Bài 5 Cho cấp số cộng (un) thỏa mãn
Bài 6 Trong các dãy số sau đây, dãy số nào là cấp số cộng? Tính số hạng đầu và công sai của nó:
a)
b)
c)
d)
Bài 7 Tìm số hạng đầu và công sai của các cấp số cộng sau, biết:
a) ,
b) .
Bài 8 Trong các bài toán về cấp số cộng, ta thường gặp năm đại lượng .
a) Hãy viết các hệ thức liên hệ giữa các đại lượng để có thể tìm được các đại lượng còn lại?
b) Lập bảng theo mẫu sau và điền vào chỗ trống thích hợp:
Bài 9 Mặt sàn tầng một của một ngôi nhà cao hơn mặt sân . Cầu thang đi từ tầng một lên tầng gồm bậc, mỗi bậc cao .
a) Hãy viết công thức để tìm độ cao của một bậc tuỳ ý so với mặt sân.
b) Tính độ cao của sàn tầng hai so với mặt sân.
Bài 10 Từ giờ đến giờ trưa, đồng hồ đánh bao nhiêu tiếng, nếu nó chỉ đánh chuông báo giờ và số tiếng chuông bằng số giờ?
Xem thêm các bài Chuyên đề Toán lớp 11 hay, chi tiết khác:
Xem thêm các chương trình khác:
- Giải sgk Hóa học 11 | Giải bài tập Hóa học 11 Học kì 1, Học kì 2 (Sách mới)
- Lý thuyết Hóa học 11(sách mới) | Kiến thức trọng tâm Hóa 11
- Giải sbt Hóa học 11 (sách mới) | Sách bài tập Hóa học 11
- Các dạng bài tập Hóa học lớp 11
- Giáo án Hóa học lớp 11 mới nhất
- Tóm tắt tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 11 (hay nhất) | Để học tốt Ngữ Văn 11 (sách mới)
- Soạn văn 11 (ngắn nhất) | Để học tốt Ngữ văn 11 (sách mới)
- Tác giả tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Văn mẫu 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 11 (thí điểm)
- Giải sgk Tiếng Anh 11 | Giải bài tập Tiếng anh 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Tiếng Anh 11 (sách mới) | Sách bài tập Tiếng Anh 11
- Giải sbt Tiếng Anh 11 (thí điểm)
- Giải sgk Lịch sử 11 | Giải bài tập Lịch sử 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Lịch Sử 11(sách mới) | Kiến thức trọng tâm Lịch Sử 11
- Giải Tập bản đồ Lịch sử 11
- Giải sgk Vật Lí 11 | Giải bài tập Vật lí 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Vật Lí 11 (sách mới) | Sách bài tập Vật Lí 11
- Lý thuyết Vật Lí 11 (sách mới) | Kiến thức trọng tâm Vật Lí 11
- Các dạng bài tập Vật Lí lớp 11
- Giáo án Vật lí lớp 11 mới nhất
- Giải sgk Sinh học 11 | Giải bài tập Sinh học 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Sinh học 11 (sách mới) | Kiến thức trọng tâm Sinh 11
- Giải sgk Giáo dục công dân 11
- Lý thuyết Giáo dục công dân 11
- Lý thuyết Địa Lí 11 (sách mới) | Kiến thức trọng tâm Địa lí 11
- Giải Tập bản đồ Địa Lí 11
- Giải sgk Giáo dục quốc phòng - an ninh 11