Chuyên đề Giới hạn mới nhất - Toán 11
Với Chuyên đề Toán 11 Chương 4: Giới hạn mới nhất được biên soạn bám sát chương trình Toán lớp 11 giúp bạn học tốt môn Toán hơn.
Mục lục Chuyên đề Toán 11 Chương 4: Giới hạn
Xem thêm các bài Giáo án Toán lớp 4 hay, chi tiết khác:
Chương 1: Hàm số lượng giác và phương trình lượng giác
Chương 3: Dãy số - Cấp số cộng và cấp số nhân
Chương 1: Phép dời hình và phép đồng dạng trong mặt phẳng
------------------------------------------------------
Chuyên đề Giới hạn của dãy số - Toán 11
A. Lý thuyết
I. Giới hạn hữu hạn của dãy số
1. Định nghĩa
Định nghĩa 1
Ta nói dãy số (un) có giới hạn là 0 khi n dần tới dương vô cực, nếu |un| có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi.
Kí hiệu: limn→+∞un=0 hay un → 0 khi n → +∞.
Ví dụ 1. Cho dãy số (un) với un=(−1)nn2. Tìm giới hạn dãy số
Giải
Xét |un|=|1n2|=1n2
Với n > 10 n2 > 102 = 100
⇒|un|=|1n2|=1n2<1100⇒limn→∞un=0
Định nghĩa 2
Ta nói dãy số (vn) có giới hạn là a (hay vn dần tới a) khi n → +∞ nếu limn→+∞(vn−a)=0
Kí hiệu: limn→+∞vn=a hay vn → a khi n → +∞.
Ví dụ 2. Cho dãy số vn=−n−13+2n. Chứng minh rằng limn→∞vn=−12.
Giải
Ta có limn→∞(vn+12)=limn→∞(−n−13+2n+12)=limn→∞=12(3+2n)=0
Do đó: limn→∞vn=−12.
2. Một vài giới hạn đặc biệt
a) limn→+∞1n=0,limn→+∞1nk=0 với k nguyên dương;
b) limn→+∞qn nếu |q| < 1;
c) Nếu un = c (c là hằng số) thì limn→+∞un=limn→+∞c=c.
Chú ý: Từ nay về sau thay cho limn→+∞un=a ta viết tắt là lim un = a.
II. Định lý về giới hạn hữu hạn
Định lí 1
a) Nếu lim un = a và lim vn = b thì
lim (un + vn) = a + b
lim (un – vn) = a – b
lim (un.vn) = a.b
limunvn=ab (nếu b≠0)
Nếu un≥0 với mọi n và limun = a thì:
lim√un=√a và a≥0.
Ví dụ 3. Tính lim(n2−2n+1)
Giải
lim(n2−2n+1)=limn3+n2−2n+1=lim1+1n−2n31n2+1n3=lim(1+1n−2n3):lim(1n2+1n3)=(lim1+lim1n−lim2n3):(lim1n2+lim1n3)=+∞
Ví dụ 4. Tìm lim√2+9n21+4n
Giải
lim√2+9n21+4n=lim√n2(2n2+9)n(1n+4)=limn√(2n2+9)n(1n+4)=lim√(2n2+9)1n+4=34.
III. Tổng của cấp số nhân lùi vô hạn
Cấp số nhân vô hạn (un) có công bội q, với |q| < 1 được gọi là cấp số nhân lùi vô hạn.
Tổng của cấp số nhân lùi vô hạn:
S=u1+u2+u3+...
Xem thêm các chương trình khác:
- Giải sgk Hóa học 11 | Giải bài tập Hóa học 11 Học kì 1, Học kì 2 (Sách mới)
- Lý thuyết Hóa học 11(sách mới) | Kiến thức trọng tâm Hóa 11
- Giải sbt Hóa học 11 (sách mới) | Sách bài tập Hóa học 11
- Các dạng bài tập Hóa học lớp 11
- Giáo án Hóa học lớp 11 mới nhất
- Tóm tắt tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Soạn văn 11 (hay nhất) | Để học tốt Ngữ Văn 11 (sách mới)
- Soạn văn 11 (ngắn nhất) | Để học tốt Ngữ văn 11 (sách mới)
- Tác giả tác phẩm Ngữ văn 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Văn mẫu 11 (Sách mới) | Kết nối tri thức, Cánh diều, Chân trời sáng tạo
- Giải sgk Tiếng Anh 11 (thí điểm)
- Giải sgk Tiếng Anh 11 | Giải bài tập Tiếng anh 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Tiếng Anh 11 (sách mới) | Sách bài tập Tiếng Anh 11
- Giải sbt Tiếng Anh 11 (thí điểm)
- Giải sgk Lịch sử 11 | Giải bài tập Lịch sử 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Lịch Sử 11(sách mới) | Kiến thức trọng tâm Lịch Sử 11
- Giải Tập bản đồ Lịch sử 11
- Giải sgk Vật Lí 11 | Giải bài tập Vật lí 11 Học kì 1, Học kì 2 (sách mới)
- Giải sbt Vật Lí 11 (sách mới) | Sách bài tập Vật Lí 11
- Lý thuyết Vật Lí 11 (sách mới) | Kiến thức trọng tâm Vật Lí 11
- Các dạng bài tập Vật Lí lớp 11
- Giáo án Vật lí lớp 11 mới nhất
- Giải sgk Sinh học 11 | Giải bài tập Sinh học 11 Học kì 1, Học kì 2 (sách mới)
- Lý thuyết Sinh học 11 (sách mới) | Kiến thức trọng tâm Sinh 11
- Giải sgk Giáo dục công dân 11
- Lý thuyết Giáo dục công dân 11
- Lý thuyết Địa Lí 11 (sách mới) | Kiến thức trọng tâm Địa lí 11
- Giải Tập bản đồ Địa Lí 11
- Giải sgk Giáo dục quốc phòng - an ninh 11