Cho tứ diện ABCD có AC = BC, AD = BD. Gọi M là trung điểm của AB. Chứng minh rằng (CDM)

Lời giải Bài 7.20 trang 34 SBT Toán 11 Tập 2 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 430 08/11/2023


Giải SBT Toán 11 Bài 25: Hai mặt phẳng vuông góc

Bài 7.20 trang 34 SBT Toán 11 Tập 2: Cho tứ diện ABCD có AC = BC, AD = BD. Gọi M là trung điểm của AB. Chứng minh rằng (CDM) (ABC) và (CDM) (ABD).

Lời giải:

Cho tứ diện ABCD có AC = BC, AD = BD

Xét tam giác ABC có AC = BC nên tam giác ABC cân tại C mà CM là trung tuyến nên CM là đường cao hay CM AB.

Xét tam giác ADB có AD = BD nên tam giác ABD cân tại D mà DM là trung tuyến nên DM là đường cao hay DM AB.

Do đó AB (CDM) mà AB (ABC) nên (CDM) (ABC).

Vì AB (CDM) mà AB (ABD) nên (CDM) (ABD).

1 430 08/11/2023


Xem thêm các chương trình khác: