Lý thuyết Xác suất thực nghiệm trong một trò chơi và thí nghiệm đơn giản – Toán lớp 6 Cánh diều

Với lý thuyết Toán lớp 6 Bài 4: Xác suất thực nghiệm trong một trò chơi và thí nghiệm đơn giản chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Cánh diều sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 6.

1 1,085 16/04/2023


A. Lý thuyết Toán 6 Bài 4: Xác suất thực nghiệm trong một trò chơi và thí nghiệm đơn giản - Cánh diều

1. Xác suất thực nghiệm trong một số trò chơi tung đồng xu

Xác suất thực nghiệm xuất hiện mặt S khi tung đồng xu nhiều lần bằng:

Số lần mặt S xuất hiện

Tổng số lần tung đồng xu

Xác suất thực nghiệm xuất hiện mặt N khi tung đồng xu nhiều lần bằng:

Số lần mặt N xuất hiện

Tổng số lần tung đồng xu

Chú ý: Xác suất thực nghiệm xuất hiện mặt S (hoặc mặt N) phản ánh số lần xuất hiện mặt đó so với tống số lần tiến hành thực nghiệm.

Số lần mặt S xuất hiện

Tổng số lần tung đồng xu

Ví dụ 1: Tung một đồng xu 50 lần liên tiếp, có 18 lần xuất hiện mặt S.

a) Tính xác suất thực nghiệm xuất hiện mặt S.

b) Tính xác suất thực nghiệm xuất hiện mặt N.

Hướng dẫn giải

a) Xác suất thực nghiệm xuất hiện mặt N là 1850=925.

b) Khi tung đồng xu 50 lần liên tiếp, do mặt S xuất hiện 18 lần nên mặt N xuất hiện số lần là: 50 – 18 = 32 (lần).

Xác suất thực nghiệm xuất hiện mặt N là: 3250=1625.

2. Xác suất thực nghiệm trong trò chơi lấy vật từ trong hộp

Xác suất thực nghiệm xuất hiện màu A khi lấy bóng nhiều lần bằng:

Số lần màu A xuất hiện

Tổng số lần lấy bóng

Ví dụ 2: Một hộp chứa 5 viên bi, trong đó có 1 viên bi xanh, 1 viên bi đỏ, 1 viên bi vàng, 1 viên bi trắng và 1 viên bi đen. Lấy ngẫu nhiên 1 viên bi. Bạn Tú lấy bi 23 lần liên tiếp thì có 9 lần lấy được viên bi màu đỏ. Tính xác suất thực nghiệm xuất hiện viên bi màu đỏ.

Hướng dẫn giải

Xác suất thực nghiệm xuất hiện viên bi màu đỏ là: 923.

3. Xác suất thực nghiệm trong trò chơi gieo xúc xắc

Xác suất thực nghiệm xuất hiện mặt k chấm (k, 1 ≤ k ≤ 6) khi gieo xúc xắc nhiều lần bằng:

Số lần xuất hiện mặt k chấm

Tổng số lần gieo xúc xắc

Ví dụ 3: Gieo một xúc xắc 6 mặt liên tiếp 20 lần thì thấy 6 lần xuất hiện mặt 1 chấm. Xác suất thực nghiệm xuất hiện mặt 1 chấm bằng bao nhiêu? 

Hướng dẫn giải

Xác suất thực nghiệm xuất hiện mặt 1 chấm là: 620=310.

Bài tập tự luyện

Bài 1. Trong hộp có một số bút màu xanh và một số bút màu đỏ, lấy ngẫu nhiên 1 bút từ hộp, xem màu rồi trả lại. Lặp lại hoạt động trên 50 lần, ta được kết quả theo bảng sau:

Loại bút

Bút màu xanh

Bút màu đỏ

Số lần

42

8

 

a) Hãy tìm xác suất của thực nghiệm xuất hiện màu xanh khi lấy bút.

b) Em hãy dự đoán xem trong hộp loại bút nào nhiều hơn.

Hướng dẫn giải

a) Quan sát bảng ta thấy số lần xuất hiện bút màu xanh là 42 lần.

Xác suất của thực nghiệm xuất hiện màu xanh khi lấy bút là: 4250=0,84.

b) Để dự đoán xem trong hộp loại bút nào nhiều hơn ta tính thêm xác suất của thực nghiệm xuất hiện màu xanh khi lấy bút.

Quan sát bảng ta thấy số lần xuất hiện bút màu đỏ là 8 lần.

Xác suất của thực nghiệm xuất hiện màu đỏ khi lấy bút là: 850=0,16.

Ta thấy 0,84 > 0,16 nên xác suất của thực nghiệm lấy được bút màu xanh lớn hơn bút đỏ, do đó ta có thể dự đoán rằng trong hộp bút xanh có nhiều hơn.

Bài 2. Gieo con súc sắc có 6 mặt 100 lần, kết quả thu được ghi ở bảng sau

Mặt

1 chấm

2 chấm

3 chấm

4 chấm

5 chấm

6 chấm

Số lần xuất hiện

17

18

15

14

16

20

a) Hãy tìm xác suất của thực nghiệm xuất hiện mặt 6 chấm.

b) Hãy tìm xác suất của thực nghiệm xuất hiện mặt chấm chẵn.

c) Hãy tìm xác suất của thực nghiệm xuất hiện mặt chấm lẻ.

Hướng dẫn giải

a) Quan sát bảng ta thấy số lần xuất hiện mặt 6 chấm là 20 lần.

Xác suất của thực nghiệm xuất hiện mặt 6 chấm là: 20100=0,2

b) Các mặt chấm chẵn của xúc xắc là mặt 2, 4, 6.

Tổng số lần xuất hiện mặt chấm chẵn là: 18 + 14 + 20 = 52 (lần).

Xác suất của thực nghiệm xuất hiện mặt chấm chẵn là: 52100=0,52.

c) Các mặt chấm lẻ của xúc xắc là mặt 1, 3, 5.

Tổng số lần xuất hiện mặt chấm lẻ là: 17 + 15 + 15 = 48 (lần).

Xác suất của thực nghiệm xuất hiện mặt chấm lẻ là: 48100=0,48.

 

B. Trắc nghiệm Xác suất thực nghiệm trong một trò chơi và thí nghiệm đơn giản (Cánh diều 2023) có đáp án

Câu 1. Tung hai đồng xu cân đối 50 lần ta được kết quả như sau:

Sự kiện

Hai đồng sấp

Một đồng sấp, một đồng ngửa

Hai đồng ngửa

Số lần

22

20

8

Xác suất thực nghiệm của sự kiện “Có một đồng xu sấp, một đồng xu ngửa” là

A. 0,2

B. 0,4

C. 0,44

D. 0,16

Đáp án: B

Giải thích:

- Số lần tung là 50.

- Số lần sự kiện “Có một đồng xu sấp, một đồng xu ngửa” xảy ra là 20.

- Xác suất thực nghiệm của sự kiện trên là

20:50 = 0,4

Câu 2. Tung hai đồng xu cân đối 50 lần ta được kết quả như sau:

Sự kiện

Hai đồng sấp

Một đồng sấp, một đồng ngửa

Hai đồng ngửa

Số lần

22

20

8

Xác suất thực nghiệm của sự kiện “Hai đồng xu đều sấp” 

A. 0,22

B. 0,4

C. 0,44

D. 0,16

Đáp án: C

Giải thích:

- Số lần tung là 50.

- Số lần sự kiện “Có một đồng xu sấp, một đồng xu ngửa” xảy ra là 22.

- Xác suất thực nghiệm của sự kiện trên là là 22:50=0,4422:50=0,44.

Câu 3. Gieo một con xúc xắc 6 mặt 50 lần ta được kết quả như sau:

Mặt

1 chấm

2 chấm

3 chấm

4 chấm

5 chấm

6 chấm

Số lần

8

7

3

12

10

10

Hãy tính xác suất thực nghiệm của sự kiện gieo được mặt có số lẻ chấm trong 50 lần gieo trên.

A. 0,21

B. 0,44

C. 0,42

D. 0,18

Đáp án: C

Giải thích:

Tổng số lần gieo là 50.

Các mặt có số lẻ chấm của con xúc xắc là mặt 1, 3 và 5.

Số lần được mặt 1 chấm là 8 lần, mặt 3 chấm là 3 lần, mặt 5 chấm là 10 lần.

Số lần được mặt có số lẻ chấm là 8+3+10=21 lần

Xác suất thực nghiệm của sự kiện gieo được mặt có số lẻ chấm trong 50 lần là: 2150=0,42

Câu 4. Hằng ngày Sơn đều đi xe buýt đến trường. Sơn ghi lại thời gian chờ xe của mình trong 20 lần liên tiếp ở bảng sau:Hãy tính xác suất thực nghiệm của sự kiện “Sơn phải chờ xe dưới 2 phút

A. 0,2

B. 5

C. 0,5

D. 0,25

Đáp án: D

Giải thích:

Tổng số lần Sơn chờ xe là 20 lần.

Số lần Sơn phải chờ xe dưới 2 phút là 5 lần.

Xác suất thực nghiệm của sự kiện “Sơn phải chờ xe dưới 2 phút” là: 520=0,25

Câu 5. Hằng ngày Sơn đều đi xe buýt đến trường. Sơn ghi lại thời gian chờ xe của mình trong 20 lần liên tiếp ở bảng sau:Hãy tính xác suất thực nghiệm của sự kiện “Sơn phải chờ xe từ 5 phút trở lên

A. 0,3

B. 6

C. 0,6

D. 0,2

Đáp án: A

Giải thích:

Tổng số lần Sơn chờ xe là 20 lần.

Số lần Sơn phải chờ xe từ 5 phút đến dưới 10 phút là: 4 lần

Số lần Sơn phải chờ xe từ 10 phút trở lên là: 2 lần

Số lần Sơn phải chờ xe từ 5 phút trở lên là: 4+2 = 6 lần.

Xác suất của sự kiện “Sơn phải chờ xe từ 5 phút trở lên” là:620=0,3

Câu 6. Hằng ngày Sơn đều đi xe buýt đến trường. Sơn ghi lại thời gian chờ xe của mình trong 20 lần liên tiếp ở bảng sau:Hãy tính xác suất thực nghiệm của sự kiện “Sơn phải chờ xe dưới 10 phút

A. 0,1

B. 0,2

C. 0,9

D. 0,5

Đáp án: C

Giải thích:

Tổng số lần Sơn chờ xe là 20 lần.

Số lần Sơn phải chờ xe dưới 2 phút là 5 lần.

Số lần Sơn phải chờ xe từ 2 phút đến dưới 5 phút là 9 lần.

Số lần Sơn phải chờ xe từ 5 phút đến dưới 10 phút là 4 lần.

Số lần Sơn phải chờ xe dưới 10 phút là 5+9+4=18 lần.

Xác suất thực nghiệm của sự kiện “Sơn phải chờ xe dưới 10 phút” là: 1820=0,9

Câu 7. Trong hộp có một số bút xanh, một số bút vàng và một số bút đỏ. lấy ngẫu nhiên 1 bút từ hộp, xem màu gì rồi trả lại. Lặp lại hoạt động trên 40 lần ta được kết quả như sau:

Màu bút

Bút xanh

Bút vàng

Bút đỏ

Số lần

14

10

16

Tính xác suất thực nghiệm của sự kiện lấy được màu đỏ

A. 0,16

B. 0,6

C. 0,4

D. 0,45

Đáp án: C

Giải thích:

Tổng số lần lấy là 40.

Số lần lấy được màu đỏ là 16.

Xác suất thực nghiệm của sự kiện lấy được màu đỏ là:

1640=0,4

Câu 8.  Trong hộp có một số bút xanh, một số bút vàng và một số bút đỏ. lấy ngẫu nhiên 1 bút từ hộp, xem màu gì rồi trả lại. Lặp lại hoạt động trên 40 lần ta được kết quả như sau:

Màu bút

Bút xanh

Bút vàng

Bút đỏ

Số lần

14

10

16

Tính xác suất thực nghiệm của sự kiện không lấy được màu vàng

A. 0,25

B. 0,75

C. 0,1

D. 0,9

Đáp án: B

Giải thích:

Tổng số lần lấy bút là 40.

Số lần lấy được màu vàng là 10

Số lần không lấy được màu vàng là 40-10=30.

Xác suất suất thực nghiệm của sự kiện không lấy được màu vàng là: 3040=0,75

Câu 9. Tổng hợp kết quả xét nghiệm bệnh viêm gan ở một phòng khám trong một năm ta được bảng sau:

Quý

Số ca xét nghiệm

Số ca dương tính

I

210

21

II

150

15

III

180

9

IV

240

48

Xác suất thực nghiệm của sự kiện “một ca có kết quả dương tính quý I” là

A. 0,1

B. 0,25

C. 0,15

D. 0,125

Đáp án: A

Giải thích:

Số ca xét nghiệm quý I là 210.

Số ca dương tính là 21 ca.

Xác suất thực nghiệm của sự kiện “một ca có kết quả dương tính quý I” là: 21210=0,1

Câu 10. Tổng hợp kết quả xét nghiệm bệnh viêm gan ở một phòng khám trong một năm ta được bảng sau:

Quý

Số ca xét nghiệm

Số ca dương tính

I

210

21

II

150

15

III

180

9

IV

240

48

Có bao nhiêu quý có xác suất thực nghiệm của sự kiện “một ca có kết quả dương tính” dưới 0,1? 

A. 1

B. 2

C. 3

D. 0

Đáp án: B

Giải thích:

Bước 1:

Xác suất thực nghiệm của sự kiện “một ca có kết quả dương tính” của quý I là: 21210=0,1

Xác suất thực nghiệm của sự kiện “một ca có kết quả dương tính” của quý II là: 15200=0,075

Xác suất thực nghiệm của sự kiện “một ca có kết quả dương tính” của quý III là: 9180=0,05

Xác suất thực nghiệm của sự kiện “một ca có kết quả dương tính” của quý IV là: 48240=0,2

Bước 2:

Ta có hai số nhỏ hơn 0,1 là 0,05 và 0,075.

Vậy có 2 quý có xác suất thực nghiệm của sự kiện “một ca có kết quả dương tính” dưới 0,1.

Câu 11. Tổng hợp kết quả xét nghiệm bệnh viêm gan ở một phòng khám trong một năm ta được bảng sau:

Quý

Số ca xét nghiệm

Số ca dương tính

I

210

21

II

150

15

III

180

9

IV

240

48

Xác suất thực nghiệm của sự kiện “một ca có kết quả dương tính sau quý III tính từ đầu năm” là

A. 0,05

B. 0,15

C. 112

D. 115

Đáp án: C

Giải thích:

Số ca xét nghiệm sau quý III tính từ đầu năm là:

210 + 150 + 180 = 540.

Số ca dương tính sau quý III tính từ đầu năm là:

21 + 15 + 9 = 45.

Xác suất thực nghiệm của sự kiện “một ca có kết quả dương tính sau quý III tính từ đầu năm” là: 45540=112

Câu 12. Kết quả kiểm tra môn Toán và Ngữ văn của một số học sinh được lựa chọn ngẫu nhiên cho ở bảng sau:Ví dụ: Số học sinh có kết quả Toán – giỏiNgữ văn – giỏi là 40. Minh họaHãy tính xác suất thực nghiệm của sự kiện một học sinh được chọn ra một cách ngẫu nhiên có kết quả:

Môn Toán đạt loại giỏi

A. 1534

B. 417

C. 617

D. 1334

Đáp án: A

Giải thích:

Tổng số học sinh là tổng tất cả các số trên bảng: 170.

Số học sinh được loại giỏi môn Toán là 40 + 20 + 15 = 75

Xác suất thực nghiệm của sự kiện một học sinh được chọn ra một cách ngẫu nhiên được loại giỏi môn Toán là: 75170=1534

Câu 13. Kết quả kiểm tra môn Toán và Ngữ văn của một số học sinh được lựa chọn ngẫu nhiên cho ở bảng sau:Ví dụ: Số học sinh có kết quả Toán – giỏiNgữ văn – giỏi là 40. Minh họaHãy tính xác suất thực nghiệm của sự kiện một học sinh được chọn ra một cách ngẫu nhiên có kết quả:

Loại khá trở lên ở cả hai môn

A. 917

B. 717

C. 2134

D. 734

Đáp án: C

Giải thích:

Tổng số học sinh là tổng tất cả các số trên bảng: 170.

Các học sinh được loại khá trở lên ở cả 2 môn:

+ Toán giỏi, Ngữ văn giỏi: 40

+ Toán giỏi, Ngữ văn khá: 20

+ Toán khá, Ngữ văn giỏi: 15

+ Toán khá, Ngữ văn khá: 30

Số học sinh được loại khá trở lên ở cả 2 môn là:

 40+20+15+30=105

Xác suất thực nghiệm của sự kiện một học sinh được chọn ra một cách ngẫu nhiên được loại khá trở lên ở cả 2 môn là:

105170=2134

Câu 14. Kết quả kiểm tra môn Toán và Ngữ văn của một số học sinh được lựa chọn ngẫu nhiên cho ở bảng sau:Ví dụ: Số học sinh có kết quả Toán – giỏiNgữ văn – giỏi là 40. Minh họaHãy tính xác suất thực nghiệm của sự kiện một học sinh được chọn ra một cách ngẫu nhiên có kết quả:

Loại trung bình ở ít nhất một môn

A. 1317

B. 1334

C. 2134

D. 12

Đáp án: B

Giải thích:

Tổng số học sinh là 170.

Các học sinh được loại trung bình ở ít nhất một môn là:

+ Toán trung bình, Văn giỏi: 5

+ Toán trung bình, Văn khá: 15

+ Toán trung bình, Văn trung bình: 20

+ Văn trung bình, Toán giỏi: 15

+ Văn trung bình, Toán khá: 10

Số học sinh được loại trung bình ở ít nhất một môn là:

5 + 15 + 20 + 15 + 10 = 65

Xác suất thực nghiệm của sự kiện một học sinh được chọn ra một cách ngẫu nhiên có kết quả được loại trung bình ít nhất một môn: 65170=1334

Câu 15. Nếu tung một đồng xu 22 lần liên tiếp thì, có 14 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt N bằng bao nhiêu?

A. 711

B. 411

C. 47

D. 37

Đáp án: A

Giải thích:

Tổng số lần gieo là 22.

Số lần gieo được mặt N là 14.

Xác suất thực nghiệm xuất hiện mặt N là: 1422=711

Câu 16. Nếu tung một đồng xu 30 lần liên tiếp có 12 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt S bằng bao nhiêu?

A. 25

B. 15

C. 35

D. 34

Đáp án: C

Giải thích:

Tổng số lần gieo là 30.

Số lần gieo được mặt S là 30 – 12 = 18.

Xác suất thực nghiệm xuất hiện mặt S là: 1830=35

Câu 17. Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.

Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:

Lần 1

Số 3

Lần 6

Số 5

Lần 11

Số 3

Lần 16

Số 2

Lần 21

Số 1

Lần 2

Số 1

Lần 7

Số 2

Lần 12

Số 2

Lần 17

Số 1

Lần 22

Số 5

Lần 3

Số 2

Lần 8

Số 3

Lần 13

Số 2

Lần 18

Số 2

Lần 23

Số 3

Lần 4

Số 3

Lần 9

Số 4

Lần 14

Số 1

Lần 19

Số 3

Lần 24

Số 4

Lần 5

Số 4

Lần 10

Số 5

Lần 15

Số 5

Lần 20

Số 5

Lần 25

Số 5

Tính xác suất thực nghiệm

Xuất hiện số 1

A. 0,4

B. 0,14

C. 0,16

D. 0, 25

Đáp án: C

Giải thích:

Tổng số lần rút là 25 lần.

Số lần xuất hiện số 1 là 4 lần.

Xác suất thực nghiệm xuất hiện số 1 là: 425=0,16

Câu 18. Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.

Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:

Lần 1

Số 3

Lần 6

Số 5

Lần 11

Số 3

Lần 16

Số 2

Lần 21

Số 1

Lần 2

Số 1

Lần 7

Số 2

Lần 12

Số 2

Lần 17

Số 1

Lần 22

Số 5

Lần 3

Số 2

Lần 8

Số 3

Lần 13

Số 2

Lần 18

Số 2

Lần 23

Số 3

Lần 4

Số 3

Lần 9

Số 4

Lần 14

Số 1

Lần 19

Số 3

Lần 24

Số 4

Lần 5

Số 4

Lần 10

Số 5

Lần 15

Số 5

Lần 20

Số 5

Lần 25

Số 5

Tính xác suất thực nghiệm

Xuất hiện số 2  

A. 0,42

B. 0,24

C. 0,12

D. 0,6

Đáp án: B

Giải thích:

Tổng số lần rút là 25 lần.

Số lần xuất hiện số 2 là 6 lần.

Xác suất thực nghiệm xuất hiện số 2 là: 625=0,24

Câu 19. Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.

Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:

Lần 1

Số 3

Lần 6

Số 5

Lần 11

Số 3

Lần 16

Số 2

Lần 21

Số 1

Lần 2

Số 1

Lần 7

Số 2

Lần 12

Số 2

Lần 17

Số 1

Lần 22

Số 5

Lần 3

Số 2

Lần 8

Số 3

Lần 13

Số 2

Lần 18

Số 2

Lần 23

Số 3

Lần 4

Số 3

Lần 9

Số 4

Lần 14

Số 1

Lần 19

Số 3

Lần 24

Số 4

Lần 5

Số 4

Lần 10

Số 5

Lần 15

Số 5

Lần 20

Số 5

Lần 25

Số 5

Tính xác suất thực nghiệm

Xuất hiện số chẵn 

A. 0,24

B. 0,63

C. 0,36

D. 0,9

Đáp án: C

Giải thích:

Tổng số lần rút là 25 lần.

Số lần xuất hiện số 2 là 6 lần.

Số lần xuất hiện số 4 là 3 lần.

Số lần xuất hiện số chẵn là 6 + 3 = 9 lần.

Xác suất thực nghiệm xuất hiện số 2 là: 925=0,36

Xem thêm tóm tắt lý thuyết Toán lớp 6 sách Cánh diều hay, chi tiết khác:

1 1,085 16/04/2023


Xem thêm các chương trình khác: