Lý thuyết Bội chung và bội chung nhỏ nhất chi tiết – Toán lớp 6 Cánh diều
Với lý thuyết Toán lớp 6 Bài 13: Bội chung và bội chung nhỏ nhất chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Cánh diều sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 6.
A. Lý thuyết Toán 6 Bài 3: Bội chung và bội chung nhỏ nhất – Cánh diều
I. Bội chung và bội chung nhỏ nhất
1. Bội chung:
Số tự nhiên n được gọi là bội chung của hai số a và b nếu n vừa là bội của a vừa là bội của b.
Quy ước: Viết tắt bội chung là BC.
Kí hiệu: Tập hợp các bội chung của a và b là BC(a, b).
Ví dụ: Các bội của 2 là: 0, 2, 4, 6, 8, 10, 12,…
Các bội của 3 là: 0, 3, 6, 9, 12,…
Các bội chung của 2 và 3 là: 0, 6, 12, …
Vậy BC(2, 3) = {0; 6; 12; …}.
Chú ý: Số tự nhiên n được gọi là bội chung của ba số a, b, c nếu n là bội của cả ba số a, b, c. Ta kí hiệu: Tập hợp các bội chung của a, b, c là BC(a, b, c).
Ví dụ: 20 chia hết cho 2 nên 20 là bội của 2, 20 chia hết cho 4 nên 20 là bội của 4, 20 chia hết cho 5 nên 20 là bội của 5. Do đó 20 là một bội chung của ba số 2, 4, 5.
2. Bội chung nhỏ nhất:
Số nhỏ nhất khác 0 trong các bội chung của a và b được gọi là bội chung nhỏ nhất của a và b.
Quy ước: Viết tắt bội chung nhỏ nhất là BCNN.
Kí hiệu: bội chung nhỏ nhất của a và b là BCNN(a, b).
Ví dụ: Ta có các bội chung của 2 và 3 là: 0, 6, 12,… Số nhỏ nhất khác 0 trong các bội chung của 2 và 3 là 6 nên 6 là bội chung nhỏ nhất của 2 và 3.
Vậy BCNN(2, 3) = 6.
Chú ý:
+ Số nhỏ nhất khác 0 trong các bội chung của ba số a, b, c được gọi là bội chung nhỏ nhất của ba số a, b, c.
+ Kí hiệu: bội chung nhỏ nhất của a, b, c là BCNN(a, b, c).
+ Bội chung nhỏ nhất của hai số nguyên tố cùng nhau bằng tích của hai số đó.
Ví dụ: 5 và 8 là hai số nguyên tố cùng nhau nên BCNN(5, 8) = 5 . 8 = 40.
3. Tìm bội chung thông qua BCNN
+ Bội chung của nhiều số là bội của bội chung nhỏ nhất của chúng.
+ Để tìm bội chung của nhiều số, ta có thể lấy bội chung nhỏ nhất của chúng lần lượt nhân với 0, 1, 2, …
Ví dụ: Biết BCNN(a, b) = 30. Tìm tất cả các số có hai chữ số là bội chung của a và b.
Lời giải:
Vì bội chung của a và b đều là bội của BCNN(a, b) = 30 nên tất cả các số có hai chữ số là bội chung của a và b là: 30, 60, 90.
II. Tìm bội chung nhỏ nhất bằng cách phân tích các số ra thừa số nguyên tố
Các bước tìm BCNN bằng cách phân tích các số ra thừa số nguyên tố
Bước 1: Phân tích mỗi số ra thừa số nguyên tố
Bước 2: Chọn ra các thừa số nguyên tố chung và các thừa số nguyên tố riêng
Bước 3: Với mỗi thừa số nguyên tố chung và riêng, ta chọn lũy thừa với số mũ lớn nhất
Bước 4: Lấy tích của các lũy thừa đã chọn, ta nhận được bội chung nhỏ nhất cần tìm.
Ví dụ: Tìm BCNN(40, 48).
Lời giải:
Ta có: 40 = 23 . 5; 48 = 24 . 3
Chọn ra các thừa số nguyên tố chung và riêng của 40 và 48, đó là 2, 3, 5.
Số mũ lớn nhất của 2 là 4; Số mũ lớn nhất của 3 là 1; Số mũ lớn nhất của 5 là 1.
Vậy BCNN(40, 48) = 24 . 3 . 5 = 240.
Chú ý: Nếu thì BCNN(a, b) = a. Chẳng hạn: BCNN(48, 16) = 48.
III. Ứng dụng bội cung nhỏ nhất vào cộng, trừ các phân số không cùng mẫu
Để tính tổng (hoặc hiệu) hai hay nhiều phân số không cùng mẫu, ta có thể làm như sau:
+ Quy đồng mẫu số hai phân số bằng cách chọn mẫu chung là BCNN của các mẫu.
+ Tìm thừa số phụ của mỗi mẫu (bằng cách chia mẫu chung cho từng mẫu).
+ Sau khi nhân tử và mẫu của mỗi phân số với thừa số phụ tương ứng, ta cộng (trừ) hai hay nhiều phân số có cùng mẫu.
Ví dụ: Thực hiện phép tính:
Lời giải:
BCNN(32, 24, 48) = 96
96 : 32 = 3; 96 : 24 = 4; 96 : 48 = 2
Ta có:
Vậy .
Bài tập tự luyện
Bài 1. Tìm bội chung nhỏ nhất của:
a) 54 và 108;
b) 21, 30, 70.
Lời giải:
a) Ta có: 54 = 2 . 27 = 2 . 33
108 = 4 . 27 = 22 . 33
Các thừa số nguyên tố chung và riêng của 54 và 108 là 2 và 3, tương ứng với các số mũ lớn nhất lần lượt là 2 và 3
Khi đó: BCNN(54, 108) = 22 . 33 = 4 . 27 = 108.
b) Ta có: 21 = 3 . 7
30 = 3 . 10 = 3 . 2 . 5; 70 = 7. 10 = 7 . 2 . 5
Các thừa số nguyên tố chung và riêng của 21, 30, 70 là 2, 3, 5, 7; chúng đều có số mũ lớn nhất là 1.
Do đó: BCNN(21, 30, 70) = 2 . 3. 5 . 7 = 210.
Bài 2. Thực hiện phép tính sau: .
Lời giải:
Để thực hiện phép tính, trước hết tìm bội chung nhỏ nhất của 6, 27 và 18 để quy đồng mẫu số.
+ Ta có: 6 = 2 . 3; 27 = 33; 18 = 2 . 9 = 2 . 32
Các thừa số nguyên tố chung và riêng của 6, 27 và 18 là 2; 3, tương ứng với các số mũ lớn nhất là 1; 3.
Khi đó: BCNN(6, 27, 18) = 21 . 33 = 2 . 27 = 54
+ 54 : 6 = 9; 54 : 27 = 2; 54 : 18 = 3
+ Ta có: ;
Vậy
B. Trắc nghiệm Bội chung và bội chung nhỏ nhất (Cánh diều 2023) có đáp án
Câu 1: Số x là bội chung của số a và số b nếu:
A. x vừa là bội của a vừa là bội của b
B. x là bội của a nhưng không là bội của b
C. x là bội của b nhưng không là bội của a
D. x không là bội của cả a và b
Đáp án: A
Giải thích:
Câu 2: Điền từ thích hợp vào chỗ chấm.
Nếu 50 a và 50 b thì 50 là …….. của a và b.
A. ước chung
B. bội chung
C. bội chung nhỏ nhất
D. ước chung lớn nhất
Đáp án: B
Giải thích:
Nếu 50 a thì 50 là bội của a, tương tự 50 b thì 50 là bội của b.
Do đó 50 vừa là bội của a vừa là bội của b.
Vậy 50 là bội chung của a và b.
Do đó: Nếu 50 a và 50 b thì 50 là bội chung của a và b.
Câu 3: Điền từ thích hợp vào chỗ chấm.
Nếu 20 là số tự nhiên nhỏ nhất mà 20 a và 20 b thì 20 là …….. của a và b.
A. ước chung
B. bội chung
C. bội chung nhỏ nhất
D. ước chung lớn nhất
Đáp án: C
Giải thích:
Nếu 20 a thì 20 là bội của a, tương tự 20 b thì 20 là bội của b.
Do đó 20 vừa là bội của a vừa là bội của b.
Vậy 20 là bội chung của a và b.
Mà 20 là số nhỏ nhất, nên 20 là bội chung nhỏ nhất của a và b.
Vậy: Nếu 20 là số tự nhiên nhỏ nhất mà 20 ⁝ a và 20 ⁝ b thì 20 là bội chung nhỏ nhất của a và b.
Câu 4: Sắp xếp các bước dưới đây để được các bước đúng để tìm bội chung nhỏ nhất bằng cách phân tích các số ra thừa số nguyên tố.
1. Chọn ra các thừa số nguyên tố chung và các thừa số nguyên tố riêng
2. Với mỗi thừa số nguyên tố chung và riêng, ta chọn lũy thừa với số mũ lớn nhất
3. Phân tích mỗi số ra thừa số nguyên tố
4. Lấy tích của các lũy thừa đã chọn, ta nhận được bội chung nhỏ nhất cần tìm
A. 1 – 2 – 3 – 4
B. 2 – 1 – 3 – 4
C. 4 – 3 – 1 – 2
D. 3 – 1 – 2 – 4
Đáp án: D
Giải thích:
Theo lý thuyết ta có các bước tìm bội chung nhỏ nhất bằng cách phân tích các số ra thừa số nguyên tố là:
Bước 1. Phân tích mỗi số ra thừa số nguyên tố
Bước 2. Chọn ra các thừa số nguyên tố chung và các thừa số nguyên tố riêng
Bước 3. Với mỗi thừa số nguyên tố chung và riêng, ta chọn lũy thừa với số mũ lớn nhất
Bước 4. Lấy tích của các lũy thừa đã chọn, ta nhận được bội chung nhỏ nhất cần tìm
Do đó ta sắp xếp theo thứ tự 3 – 1 – 2 – 4.
Câu 5: Điền từ thích hợp vào chỗ chấm.
Bội chung của nhiều số là …. của bội chung nhỏ nhất của chúng.
A. bội
B. ước
C. bội chung
D. ước chung
Đáp án: A
Giải thích:
Câu 6: BCNN(60, 108) là:
A. 12
B. 108
C. 60
D. 540
Đáp án: D
Giải thích:
Ta có:
60 = 22 . 3 . 5
108 = 22 . 33
Suy ra: BCNN(60, 108) = 22 . 33 . 5 = 540
Câu 7: Số x gọi là bội chung của a, b, c nếu:
A. x a hoặc x b hoặc x c
B. x a và x b
C. x b và x c
D. x a và x b và x c
Đáp án: D
Giải thích:
Câu 8: BCNN(40, 28, 140) là:
A. 140
B. 280
C. 420
D. 560
Đáp án: B
Giải thích:
Ta có:
40 = 23 . 5
28 = 22 . 7
140 = 22 . 5 . 7
Do đó: BCNN(40, 28, 140) = 23 . 5 . 7 = 280.
Câu 9: BCNN(5, 7, 17) là:
A. 595
B. 714
C. 833
D. 1 190
Đáp án: A
Giải thích:
Ta có: 5; 7 và 17 là các số đôi một nguyên tố cùng nhau.
Do đó, BCNN(5, 7, 17) = 5 . 7 . 17 = 595
Câu 10: BCNN(12, 18, 108) là:
A. 0
B. 108
C. 144
D. 216
Đáp án: B
Giải thích:
Ta có: 108 12 và 108 18
Do đó: BCNN(12, 18, 108) = 108.
Xem thêm tóm tắt lý thuyết Toán lớp 6 sách Cánh diều hay, chi tiết khác:
Lý thuyết Tổng hợp lý thuyết Chương 1
Lý thuyết Bài 2: Tập hợp các số nguyên
Xem thêm các chương trình khác:
- Soạn văn lớp 6 (hay nhất) - Cánh diều
- Soạn văn lớp 6 (ngắn nhất) - Cánh diều
- Bố cục tác phẩm Ngữ văn 6 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 6 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 6 – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 6 – Cánh Diều
- Văn mẫu lớp 6 – Cánh Diều
- Giải VBT Luyện viết Ngữ văn lớp 6 – Cánh diều
- Giải sgk Lịch Sử 6 – Cánh Diều
- Giải sbt Lịch Sử 6 – Cánh Diều
- Giải VBT Lịch sử 6 – Cánh diều
- Lý thuyết Lịch sử lớp 6 – Cánh diều
- Giải sbt Địa Lí 6 – Cánh Diều
- Giải sgk Địa Lí 6 – Cánh Diều
- Lý thuyết Địa Lí 6 – Cánh Diều
- Giải VBT Địa lí 6 – Cánh diều
- Giải sgk GDCD 6 – Cánh Diều
- Lý thuyết GDCD 6 – Cánh diều
- Giải sbt Giáo dục công dân 6 – Cánh diều
- Giải sgk Công nghệ 6 – Cánh Diều
- Lý thuyết Công nghệ 6 – Cánh Diều
- Giải sgk Khoa học tự nhiên 6 – Cánh Diều
- Giải sbt Khoa học tự nhiên 6 – Cánh Diều
- Lý thuyết Khoa học tự nhiên 6 – Cánh Diều
- Giải sgk Tin học 6 – Cánh Diều
- Lý thuyết Tin học 6 – Cánh Diều
- Giải sgk Tiếng Anh 6 - ilearn Smart World
- Ngữ pháp Tiếng Anh 6 i-learn Smart World
- Trọn bộ Từ vựng Tiếng Anh 6 ilearn Smart World đầy đủ nhất
- Giải sbt Tiếng Anh 6 - iLearn Smart World
- Bài tập Tiếng Anh 6 iLearn Smart World theo Unit có đáp án