Lý thuyết Dấu hiệu chia hết cho 3, cho 9 chi tiết – Toán lớp 6 Cánh diều
Với lý thuyết Toán lớp 6 Bài 9: Dấu hiệu chia hết cho 3, cho 9 chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Cánh diều sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 6.
A. Lý thuyết Toán 6 Bài 9: Dấu hiệu chia hết cho 3, cho 9 – Cánh diều
I. Dấu hiệu chia hết cho 3
Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3 và chỉ những số đó mới chia hết cho 3.
Ví dụ:
+ Số 102 có tổng các chữ số là 1 + 0 + 2 = 3 chia hết cho 3 thì số 102 chia hết cho 3.
+ Số 321 có tổng các chữ số là 3 + 2 + 1 = 6 chia hết cho 3 thì số 321 chia hết cho 3.
II. Dấu hiệu chia hết cho 9
Các số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 và chỉ những số đó mới chia hết cho 9.
Ví dụ:
+ Số 792 có tổng các chữ số là 7 + 9 + 2 = 18 chia hết cho 9 thì số 792 chia hết cho 9.
+ Số 108 có tổng các chữ số là 1 + 0 + 8 = 9 chia hết cho 9 thì số 108 chia hết cho 9.
Bài tập tự luyện
Bài 1. Cho các số 104, 627, 3 114, 5 123, 6 831 và 72 102. Trong các số đó:
a) Số nào chia hết cho 3? Vì sao?
b) Số nào không chia hết cho 3? Vì sao?
c) Số nào chia hết cho 9? Vì sao?
d) Số nào chia hết cho 3, nhưng không chia hết cho 9? Vì sao?
Lời giải:
Ta áp dụng dấu hiệu chia hết cho 3 và dấu hiệu chia hết cho 9 để thực hiện bài tập này.
a) Trong các số đã cho ta có:
+ Số 627 chia hết cho 3 vì tổng các chữ số 6 + 2 + 7 = 15 chia hết cho 3.
+ Số 3 114 chia hết cho 3 vì tổng các chữ số 3 + 1 + 1 + 4 = 9 chia hết cho 3.
+ Số 6 831 chia hết cho 3 vì tổng các chữ số 6 + 8 + 3 + 1 = 18 chia hết cho 3.
+ Số 72 102 chia hết cho 3 vì tổng các chữ số 7 + 2 + 1 + 0 + 2 = 12 chia hết cho 3.
b) Ta có:
+ Số 104 không chia hết cho 3 vì tổng các chữ số 1 + 0 + 4 = 5 không chia hết cho 3.
+ Số 5 123 không chia hết cho 3 vì tổng các chữ số 5 + 1 + 2 + 3 = 11 không chia hết cho 3.
c) Ta có:
+ Số 3 114 chia hết cho 9 vì tổng các chữ số 3 + 1 + 1 + 4 = 9 chia hết cho 9.
+ Số 6 831 chia hết cho 9 vì tổng các chữ số 6 + 8 + 3 + 1 = 18 chia hết cho 9.
d) Ta có:
+ Số 627 chia hết cho 3 và không chia hết cho 9 vì tổng các chữ số 6 + 2 + 7 = 15 chia hết cho 3 nhưng không chia hết cho 9.
+ Số 72 102 chia hết cho 3 và không chia hết cho 9 vì tổng các chữ số 7 + 2 + 1 + 0 + 2 = 12 chia hết cho 3 nhưng không chia hết cho 9.
Bài 2. Chứng minh rằng tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3.
Lời giải:
Gọi 3 số tự nhiên liên tiếp là n; n + 1; n + 2 (với )
Tích của ba số tự nhiên liên tiếp là n(n + 1)(n + 2)
Mọi số tự nhiên n khi chia cho 3 có thể nhận số dư là 0, 1, 2.
+ Nếu r = 0 thì n chia hết cho 3. Khi đó n(n + 1)(n + 2) chia hết cho 3.
+ Nếu r = 1 thì n có dạng n = 3k + 1 (k )
Ta có: n + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) chia hết cho 3.
Do đó: n(n + 1)(n + 2) chia hết cho 3.
+ Nếu r = 2 thì n có dạng n = 3k + 2 (k )
Khi đó: n + 1 = 3k + 2 + 1 = 3(k + 1) chia hết cho 3.
Do đó: n(n + 1)(n + 2) chia hết cho 3.
Vậy tích của ba số tự nhiên liên tiếp chia hết cho 3.
B. Trắc nghiệm Dấu hiệu chia hết cho 3, cho 9 (Cánh diều 2023) có đáp án
I. Nhận biết
Câu 1: Hãy chọn câu sai.
A. Một số chia hết cho 9 thì số đó chia hết cho 3
B. Một số chia hết cho 3 thì số đó chia hết cho 9
C. Một số chia hết cho 10 thì số đó chia hết cho 5
D. Một số chia hết cho 45 thì số đó chia hết cho 9
Đáp án: B
Giải thích:
Câu 2: Trong các số: 333; 354; 360; 2 457; 1 617; 152, số nào chia hết cho 9?
A. 333
B. 360
C. 2457
D. Cả A, B, C đúng
Đáp án: D
Giải thích:
Ta có:
+ Số 333 có tổng các chữ số là 3 + 3 + 3 = 9 ⁝ 9 nên 333 chia hết cho 9.
+ Số 360 có tổng các chữ số là 3 + 6 + 0 = 9 ⁝ 9 nên 360 chia hết cho 9.
+ Số 2 475 có tổng các chữ số là 2 + 4 + 7 + 5 = 18 ⁝ 9 nên 2 475 chia hết cho 9.
Câu 3: Chọn câu trả lời đúng. Trong các số 2 055; 6 430; 5 041; 2 341; 2 305.
A. Các số chia hết cho 5 là 2 055; 6 430; 2 341
B. Các số chia hết cho 3 là 2 055 và 6 430.
C. Các số chia hết cho 5 là 2 055; 6 430; 2 305.
D. Không có số nào chia hết cho 3.
Đáp án: C
Giải thích:
+ Vì số 2 341 có chữ số tận cùng là 1 nên nó không chia hết cho 5, do đó đáp án A sai.
+ Số 2 055 có tổng các chữ số là 2 + 0 + 5 + 5 = 12 chia hết cho 3 nên 2 055 chia hết cho 3 nên đáp án D sai.
+ Số 6 430 có tổng các chữ số là 6 + 4 + 3 + 0 = 13 không chia hết cho 3 nên 6 430 không chia hết cho 3 nên đáp án B sai.
+ Các số chia hết cho 5 là 2 055; 6 430; 2 305 vì chúng có chữ số tận cùng là 0 hoặc 5 nên đáp án C đúng.
Câu 4: Cho các số: 123, 345, 567, 789. Có bao nhiêu số chia hết cho 3?
A. 1
B. 2
C. 3
D. 4
Đáp án: D
Giải thích:
Ta có:
+ Số 123 có tổng các chữ số là 1 + 2 + 3 = 6 chia hết cho 3 nên 123 chia hết cho 3.
+ Số 345 có tổng các chữ số là 3 + 4 + 5 = 12 chia hết cho 3 nên 345 chia hết cho 3.
+ Số 567 có tổng các chữ số là 5 + 6 + 7 = 18 chia hết cho 3 nên 567 chia hết cho 3.
+ Số 789 có tổng các chữ số là 7 + 8 + 9 = 24 chia hết cho 3 nên 789 chia hết cho 3.
Vậy có tất cả 4 số chia hết cho 3.
Câu 5: Số nào chia hết cho 9 trong các số sau đây?
A. 12 787
B. 23 568
C. 67 378
D. 70 461
Đáp án: D
Giải thích:
II. Thông hiểu
Câu 1: Tổng (hiệu) chia hết cho 9 là:
A. 1 215 + 1 356
B. 6 543 – 1 234
C. 1 . 2 . 3 . 4 . 5 + 27
D. 1 . 2 . 3 . 4 . 5 . 6 + 27
Đáp án: D
Giải thích:
Vì 3 . 6 = 18 chia hết cho 9 nên theo tính chất chia hết của một tích ta có
1 . 2 . 3 . 4 . 5 . 6 chia hết cho 9
Lại có 27 có tổng các chữ số là 2 + 7 = 9 chia hết cho 9 nên 27 chia hết cho 9
Do đó theo tính chất chia hết của một tổng ta có:
1 . 2 . 3 . 4 . 5 . 6 + 27 chia hết cho 9.
Câu 2: Tìm số thích hợp ở dấu * để số chia hết cho 9.
A. * = 1
B. * = 3
C. * = 8
D. * = 9
Đáp án: C
Giải thích:
Số có tổng các chữ số là 3 + * + 7 = 10 + *
Ta có chia hết cho 9 thì 10 + * cũng phải chia hết cho 9
Trong các đáp án đã cho, ta thấy chỉ có * = 8 là thỏa mãn (vì 10 + 8 = 18 chia hết cho 9).
Vậy * = 8.
Câu 3: Số nào trong các số sau đây là bội của cả 2, 3, 5 và 9?
A. 4 536
B. 3 240
C. 9 805
D. 12 065
Đáp án: B
Giải thích:
Số là bội của cả 2, 3, 5 và 9 là số chia hết cho cả 4 số đó.
Trong các số đã cho ta thấy số 3 240 chia hết cho cả 2 và 5 (vì có chữ số tận cùng là 0)
Lại có 3 + 2 + 4 + 0 = 9 chia hết cho cả 3 và 9.
Nên số 3 240 chia hết cho cả 3 và 9.
Vậy 3 240 là số cần tìm.
Câu 4: Tổng (hiệu) chia hết cho 3 là:
A. 562 – 123
B. 20 987 + 123 789
C. 1 . 2 . 3 . 4 – 12
D. 1 . 2. 3. 4 + 14
Đáp án: C
Giải thích:
Câu 5: Cho năm số 0; 1; 3; 5; 7. Số tự nhiên nhỏ nhất có ba chữ số khác nhau chia hết cho 3 được lập từ các số trên là:
A. 135
B. 357
C. 105
D. 103
Đáp án: C
Giải thích:
Số chia hết cho 3 là số có tổng các chữ số chia hết cho 3.
Trong năm số trên, bộ ba số có tổng chia hết cho 3 là {0; 1; 5}; {1; 3; 5}; {3; 5; 7}
Vì số cần tìm là nhỏ nhất trong các số có thể tạo thành nên số đó là 105.
Xem thêm tóm tắt lý thuyết Toán lớp 6 sách Cánh diều hay, chi tiết khác:
Lý thuyết Bài 10: Số nguyên tố. Hợp số
Lý thuyết Bài 11: Phân tích một số ra thừa số nguyên tố
Lý thuyết Bài 12: Ước chung và ước chung lớn nhất
Xem thêm các chương trình khác:
- Soạn văn lớp 6 (hay nhất) - Cánh diều
- Soạn văn lớp 6 (ngắn nhất) - Cánh diều
- Bố cục tác phẩm Ngữ văn 6 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 6 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 6 – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 6 – Cánh Diều
- Văn mẫu lớp 6 – Cánh Diều
- Giải VBT Luyện viết Ngữ văn lớp 6 – Cánh diều
- Giải sgk Lịch Sử 6 – Cánh Diều
- Giải sbt Lịch Sử 6 – Cánh Diều
- Giải VBT Lịch sử 6 – Cánh diều
- Lý thuyết Lịch sử lớp 6 – Cánh diều
- Giải sbt Địa Lí 6 – Cánh Diều
- Giải sgk Địa Lí 6 – Cánh Diều
- Lý thuyết Địa Lí 6 – Cánh Diều
- Giải VBT Địa lí 6 – Cánh diều
- Giải sgk GDCD 6 – Cánh Diều
- Lý thuyết GDCD 6 – Cánh diều
- Giải sbt Giáo dục công dân 6 – Cánh diều
- Giải sgk Công nghệ 6 – Cánh Diều
- Lý thuyết Công nghệ 6 – Cánh Diều
- Giải sgk Khoa học tự nhiên 6 – Cánh Diều
- Giải sbt Khoa học tự nhiên 6 – Cánh Diều
- Lý thuyết Khoa học tự nhiên 6 – Cánh Diều
- Giải sgk Tin học 6 – Cánh Diều
- Lý thuyết Tin học 6 – Cánh Diều
- Giải sgk Tiếng Anh 6 - ilearn Smart World
- Ngữ pháp Tiếng Anh 6 i-learn Smart World
- Trọn bộ Từ vựng Tiếng Anh 6 ilearn Smart World đầy đủ nhất
- Giải sbt Tiếng Anh 6 - iLearn Smart World
- Bài tập Tiếng Anh 6 iLearn Smart World theo Unit có đáp án